跳转至

weekly-contest-217

A

Statement

Metadata

给你一个 m x n 的整数网格 accounts ,其中 accounts[i][j] 是第 i​​​​​​​​​​​ 位客户在第 j 家银行托管的资产数量。返回最富有客户所拥有的 资产总量

客户的 资产总量 就是他们在各家银行托管的资产数量之和。最富有客户就是 资产总量 最大的客户。

 

示例 1:

输入:accounts = [[1,2,3],[3,2,1]]
输出:6
解释:
第 1 位客户的资产总量 = 1 + 2 + 3 = 6
第 2 位客户的资产总量 = 3 + 2 + 1 = 6
两位客户都是最富有的,资产总量都是 6 ,所以返回 6 。

示例 2:

输入:accounts = [[1,5],[7,3],[3,5]]
输出:10
解释:
第 1 位客户的资产总量 = 6
第 2 位客户的资产总量 = 10 
第 3 位客户的资产总量 = 8
第 2 位客户是最富有的,资产总量是 10

示例 3:

输入:accounts = [[2,8,7],[7,1,3],[1,9,5]]
输出:17

 

提示:

  • m == accounts.length
  • n == accounts[i].length
  • 1 <= m, n <= 50
  • 1 <= accounts[i][j] <= 100

Metadata

You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the i​​​​​​​​​​​th​​​​ customer has in the j​​​​​​​​​​​th​​​​ bank. Return the wealth that the richest customer has.

A customer's wealth is the amount of money they have in all their bank accounts. The richest customer is the customer that has the maximum wealth.

 

Example 1:

Input: accounts = [[1,2,3],[3,2,1]]
Output: 6
Explanation:
1st customer has wealth = 1 + 2 + 3 = 6
2nd customer has wealth = 3 + 2 + 1 = 6
Both customers are considered the richest with a wealth of 6 each, so return 6.

Example 2:

Input: accounts = [[1,5],[7,3],[3,5]]
Output: 10
Explanation: 
1st customer has wealth = 6
2nd customer has wealth = 10 
3rd customer has wealth = 8
The 2nd customer is the richest with a wealth of 10.

Example 3:

Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]
Output: 17

 

Constraints:

  • m == accounts.length
  • n == accounts[i].length
  • 1 <= m, n <= 50
  • 1 <= accounts[i][j] <= 100

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    int maximumWealth(vector<vector<int>> &accounts) {
        vector<int> vec;
        for (auto &it : accounts) vec.push_back(accumulate(it.begin(), it.end(), 0));
        sort(all(vec));
        return vec.back();
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

B

Statement

Metadata

给你一个整数数组 nums 和一个正整数 k ,返回长度为 k 且最具 竞争力 nums 子序列。

数组的子序列是从数组中删除一些元素(可能不删除元素)得到的序列。

在子序列 a 和子序列 b 第一个不相同的位置上,如果 a 中的数字小于 b 中对应的数字,那么我们称子序列 a 比子序列 b(相同长度下)更具 竞争力 。 例如,[1,3,4][1,3,5] 更具竞争力,在第一个不相同的位置,也就是最后一个位置上, 4 小于 5

 

示例 1:

输入:nums = [3,5,2,6], k = 2
输出:[2,6]
解释:在所有可能的子序列集合 {[3,5], [3,2], [3,6], [5,2], [5,6], [2,6]} 中,[2,6] 最具竞争力。

示例 2:

输入:nums = [2,4,3,3,5,4,9,6], k = 4
输出:[2,3,3,4]

 

提示:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109
  • 1 <= k <= nums.length

Metadata

Given an integer array nums and a positive integer k, return the most competitive subsequence of nums of size k.

An array's subsequence is a resulting sequence obtained by erasing some (possibly zero) elements from the array.

We define that a subsequence a is more competitive than a subsequence b (of the same length) if in the first position where a and b differ, subsequence a has a number less than the corresponding number in b. For example, [1,3,4] is more competitive than [1,3,5] because the first position they differ is at the final number, and 4 is less than 5.

 

Example 1:

Input: nums = [3,5,2,6], k = 2
Output: [2,6]
Explanation: Among the set of every possible subsequence: {[3,5], [3,2], [3,6], [5,2], [5,6], [2,6]}, [2,6] is the most competitive.

Example 2:

Input: nums = [2,4,3,3,5,4,9,6], k = 4
Output: [2,3,3,4]

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109
  • 1 <= k <= nums.length

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    vector<int> mostCompetitive(vector<int> &nums, int k) {
        int n = nums.size();
        set<PII> se;
        int ix = n - k, jx = -1;
        vector<int> res;
        for (int i = 0; i < n - k; ++i) se.insert(PII(nums[i], i));
        for (int i = n - k; i < n; ++i) {
            se.insert(PII(nums[i], i));
            while (1) {
                auto it = *se.begin();
                se.erase(it);
                if (it.se <= jx)
                    continue;
                res.push_back(it.fi);
                jx = it.se;
                break;
            }
        }
        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

C

Statement

Metadata

给你一个长度为 偶数 n 的整数数组 nums 和一个整数 limit 。每一次操作,你可以将 nums 中的任何整数替换为 1 到 limit 之间的另一个整数。

如果对于所有下标 i下标从 0 开始),nums[i] + nums[n - 1 - i] 都等于同一个数,则数组 nums互补的 。例如,数组 [1,2,3,4] 是互补的,因为对于所有下标 inums[i] + nums[n - 1 - i] = 5

返回使数组 互补最少 操作次数。

 

示例 1:

输入:nums = [1,2,4,3], limit = 4
输出:1
解释:经过 1 次操作,你可以将数组 nums 变成 [1,2,2,3](加粗元素是变更的数字):
nums[0] + nums[3] = 1 + 3 = 4.
nums[1] + nums[2] = 2 + 2 = 4.
nums[2] + nums[1] = 2 + 2 = 4.
nums[3] + nums[0] = 3 + 1 = 4.
对于每个 i ,nums[i] + nums[n-1-i] = 4 ,所以 nums 是互补的。

示例 2:

输入:nums = [1,2,2,1], limit = 2
输出:2
解释:经过 2 次操作,你可以将数组 nums 变成 [2,2,2,2] 。你不能将任何数字变更为 3 ,因为 3 > limit 。

示例 3:

输入:nums = [1,2,1,2], limit = 2
输出:0
解释:nums 已经是互补的。

 

提示:

  • n == nums.length
  • 2 <= n <= 105
  • 1 <= nums[i] <= limit <= 105
  • n 是偶数。

Metadata

You are given an integer array nums of even length n and an integer limit. In one move, you can replace any integer from nums with another integer between 1 and limit, inclusive.

The array nums is complementary if for all indices i (0-indexed), nums[i] + nums[n - 1 - i] equals the same number. For example, the array [1,2,3,4] is complementary because for all indices i, nums[i] + nums[n - 1 - i] = 5.

Return the minimum number of moves required to make nums complementary.

 

Example 1:

Input: nums = [1,2,4,3], limit = 4
Output: 1
Explanation: In 1 move, you can change nums to [1,2,2,3] (underlined elements are changed).
nums[0] + nums[3] = 1 + 3 = 4.
nums[1] + nums[2] = 2 + 2 = 4.
nums[2] + nums[1] = 2 + 2 = 4.
nums[3] + nums[0] = 3 + 1 = 4.
Therefore, nums[i] + nums[n-1-i] = 4 for every i, so nums is complementary.

Example 2:

Input: nums = [1,2,2,1], limit = 2
Output: 2
Explanation: In 2 moves, you can change nums to [2,2,2,2]. You cannot change any number to 3 since 3 > limit.

Example 3:

Input: nums = [1,2,1,2], limit = 2
Output: 0
Explanation: nums is already complementary.

 

Constraints:

  • n == nums.length
  • 2 <= n <= 105
  • 1 <= nums[i] <= limit <= 105
  • n is even.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

constexpr int N = 2e5 + 10;
int n, a[N], b[N];

class Solution {
public:
    int minMoves(vector<int> &nums, int limit) {
        n = nums.size();
        int res = n;
        memset(a, 0, sizeof a);
        memset(b, 0, sizeof b);
        for (int i = 0, j = n - 1; i < j; ++i, --j) {
            int x = nums[i], y = nums[j];
            if (x > y)
                swap(x, y);
            ++b[x + y];
            ++a[x + 1];
            --a[y + limit + 1];
        }
        int dui = n / 2;
        for (int i = 1; i <= limit * 2; ++i) {
            a[i] += a[i - 1];
            int now = a[i] - b[i] + (dui - a[i]) * 2;
            chmin(res, now);
        }
        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

D

Statement

Metadata

给你一个由 n 个正整数组成的数组 nums

你可以对数组的任意元素执行任意次数的两类操作:

  • 如果元素是 偶数除以 2
    • 例如,如果数组是 [1,2,3,4] ,那么你可以对最后一个元素执行此操作,使其变成 [1,2,3,2]
  • 如果元素是 奇数乘上 2
    • 例如,如果数组是 [1,2,3,4] ,那么你可以对第一个元素执行此操作,使其变成 [2,2,3,4]

数组的 偏移量 是数组中任意两个元素之间的 最大差值

返回数组在执行某些操作之后可以拥有的 最小偏移量

 

示例 1:

输入:nums = [1,2,3,4]
输出:1
解释:你可以将数组转换为 [1,2,3,2],然后转换成 [2,2,3,2],偏移量是 3 - 2 = 1

示例 2:

输入:nums = [4,1,5,20,3]
输出:3
解释:两次操作后,你可以将数组转换为 [4,2,5,5,3],偏移量是 5 - 2 = 3

示例 3:

输入:nums = [2,10,8]
输出:3

 

提示:

  • n == nums.length
  • 2 <= n <= 105
  • 1 <= nums[i] <= 109

Metadata

You are given an array nums of n positive integers.

You can perform two types of operations on any element of the array any number of times:

  • If the element is even, divide it by 2.
    • For example, if the array is [1,2,3,4], then you can do this operation on the last element, and the array will be [1,2,3,2].
  • If the element is odd, multiply it by 2.
    • For example, if the array is [1,2,3,4], then you can do this operation on the first element, and the array will be [2,2,3,4].

The deviation of the array is the maximum difference between any two elements in the array.

Return the minimum deviation the array can have after performing some number of operations.

 

Example 1:

Input: nums = [1,2,3,4]
Output: 1
Explanation: You can transform the array to [1,2,3,2], then to [2,2,3,2], then the deviation will be 3 - 2 = 1.

Example 2:

Input: nums = [4,1,5,20,3]
Output: 3
Explanation: You can transform the array after two operations to [4,2,5,5,3], then the deviation will be 5 - 2 = 3.

Example 3:

Input: nums = [2,10,8]
Output: 3

 

Constraints:

  • n == nums.length
  • 2 <= n <= 105
  • 1 <= nums[i] <= 109

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

constexpr int N = 1e5 + 10;
int n, a[N];

class Solution {
public:
    int minimumDeviation(vector<int> &nums) {
        vector<int> vec;
        set<PII> se;
        for (auto &it : nums) {
            vec.push_back(it);
            int cnt = 0;
            while (it % 2 == 0) {
                it /= 2;
                ++cnt;
                vec.push_back(it);
            }
            if (!cnt) {
                vec.push_back(it * 2);
                cnt = 1;
            }
            se.insert(PII(it, cnt));
        }
        sort(all(vec));
        vec.erase(unique(all(vec)), vec.end());
        ll res = INT_MAX;
        for (auto &it : vec) {
            int ok = 1;
            while (1) {
                auto pos = *se.begin();
                se.erase(pos);
                if (pos.fi < it) {
                    if (pos.se == 0) {
                        ok = 0;
                        break;
                    }
                    --pos.se;
                    pos.fi *= 2;
                    se.insert(pos);
                } else {
                    se.insert(pos);
                    break;
                }
            }
            if (!ok)
                break;
            auto pos = se.end();
            --pos;
            chmin(res, (*pos).fi - it);
        }
        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

最后更新: January 15, 2023
回到页面顶部