biweekly-contest-72
A
Statement
Metadata
- Link: 统计数组中相等且可以被整除的数对
- Difficulty: Easy
- Tag:
给你一个下标从 0 开始长度为 n
的整数数组 nums
和一个整数 k
,请你返回满足 0 <= i < j < n
,nums[i] == nums[j]
且 (i * j)
能被 k
整除的数对 (i, j)
的 数目 。
示例 1:
输入:nums = [3,1,2,2,2,1,3], k = 2
输出:4
解释:
总共有 4 对数符合所有要求:
- nums[0] == nums[6] 且 0 * 6 == 0 ,能被 2 整除。
- nums[2] == nums[3] 且 2 * 3 == 6 ,能被 2 整除。
- nums[2] == nums[4] 且 2 * 4 == 8 ,能被 2 整除。
- nums[3] == nums[4] 且 3 * 4 == 12 ,能被 2 整除。
示例 2:
输入:nums = [1,2,3,4], k = 1
输出:0
解释:由于数组中没有重复数值,所以没有数对 (i,j) 符合所有要求。
提示:
1 <= nums.length <= 100
1 <= nums[i], k <= 100
Metadata
- Link: Count Equal and Divisible Pairs in an Array
- Difficulty: Easy
- Tag:
Given a 0-indexed integer array nums
of length n
and an integer k
, return the number of pairs (i, j)
where 0 <= i < j < n
, such that nums[i] == nums[j]
and (i * j)
is divisible by k
.
Example 1:
Input: nums = [3,1,2,2,2,1,3], k = 2
Output: 4
Explanation:
There are 4 pairs that meet all the requirements:
- nums[0] == nums[6], and 0 * 6 == 0, which is divisible by 2.
- nums[2] == nums[3], and 2 * 3 == 6, which is divisible by 2.
- nums[2] == nums[4], and 2 * 4 == 8, which is divisible by 2.
- nums[3] == nums[4], and 3 * 4 == 12, which is divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 1
Output: 0
Explanation: Since no value in nums is repeated, there are no pairs (i,j) that meet all the requirements.
Constraints:
1 <= nums.length <= 100
1 <= nums[i], k <= 100
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int countPairs(vector<int> &nums, int k) {
int res = 0;
int n = nums.size();
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (nums[i] == nums[j] && (i * j) % k == 0) {
++res;
}
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 找到和为给定整数的三个连续整数
- Difficulty: Medium
- Tag:
给你一个整数 num
,请你返回三个连续的整数,它们的 和 为 num
。如果 num
无法被表示成三个连续整数的和,请你返回一个 空 数组。
示例 1:
输入:num = 33
输出:[10,11,12]
解释:33 可以表示为 10 + 11 + 12 = 33 。
10, 11, 12 是 3 个连续整数,所以返回 [10, 11, 12] 。
示例 2:
输入:num = 4
输出:[]
解释:没有办法将 4 表示成 3 个连续整数的和。
提示:
0 <= num <= 1015
Metadata
- Link: Find Three Consecutive Integers That Sum to a Given Number
- Difficulty: Medium
- Tag:
Given an integer num
, return three consecutive integers (as a sorted array) that sum to num
. If num
cannot be expressed as the sum of three consecutive integers, return an empty array.
Example 1:
Input: num = 33
Output: [10,11,12]
Explanation: 33 can be expressed as 10 + 11 + 12 = 33.
10, 11, 12 are 3 consecutive integers, so we return [10, 11, 12].
Example 2:
Input: num = 4
Output: []
Explanation: There is no way to express 4 as the sum of 3 consecutive integers.
Constraints:
0 <= num <= 1015
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
vector<long long> sumOfThree(long long num) {
if (num % 3) {
return {};
}
return {num / 3 - 1, num / 3, num / 3 + 1};
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 拆分成最多数目的偶整数之和
- Difficulty: Medium
- Tag:
给你一个整数 finalSum
。请你将它拆分成若干个 互不相同 的偶整数之和,且拆分出来的偶整数数目 最多 。
- 比方说,给你
finalSum = 12
,那么这些拆分是 符合要求 的(互不相同的偶整数且和为finalSum
):(2 + 10)
,(2 + 4 + 6)
和(4 + 8)
。它们中,(2 + 4 + 6)
包含最多数目的整数。注意finalSum
不能拆分成(2 + 2 + 4 + 4)
,因为拆分出来的整数必须互不相同。
请你返回一个整数数组,表示将整数拆分成 最多 数目的偶整数数组。如果没有办法将 finalSum
进行拆分,请你返回一个 空 数组。你可以按 任意 顺序返回这些整数。
示例 1:
输入:finalSum = 12
输出:[2,4,6]
解释:以下是一些符合要求的拆分:(2 + 10),
(2 + 4 + 6)
和 (4 + 8) 。
(2 + 4 + 6) 为最多数目的整数,数目为 3 ,所以我们返回 [2,4,6] 。
[2,6,4] ,[6,2,4] 等等也都是可行的解。
示例 2:
输入:finalSum = 7
输出:[]
解释:没有办法将 finalSum 进行拆分。
所以返回空数组。
示例 3:
输入:finalSum = 28
输出:[6,8,2,12]
解释:以下是一些符合要求的拆分:(2 + 26),
(6 + 8 + 2 + 12)
和 (4 + 24) 。
(6 + 8 + 2 + 12)
有最多数目的整数,数目为 4 ,所以我们返回 [6,8,2,12] 。
[10,2,4,12] ,[6,2,4,16] 等等也都是可行的解。
提示:
1 <= finalSum <= 1010
Metadata
- Link: Maximum Split of Positive Even Integers
- Difficulty: Medium
- Tag:
You are given an integer finalSum
. Split it into a sum of a maximum number of unique positive even integers.
- For example, given
finalSum = 12
, the following splits are valid (unique positive even integers summing up tofinalSum
):(2 + 10)
,(2 + 4 + 6)
, and(4 + 8)
. Among them,(2 + 4 + 6)
contains the maximum number of integers. Note thatfinalSum
cannot be split into(2 + 2 + 4 + 4)
as all the numbers should be unique.
Return a list of integers that represent a valid split containing a maximum number of integers. If no valid split exists for finalSum
, return an empty list. You may return the integers in any order.
Example 1:
Input: finalSum = 12
Output: [2,4,6]
Explanation: The following are some valid splits: (2 + 10)
, (2 + 4 + 6)
, and (4 + 8)
.
(2 + 4 + 6) has the maximum number of integers, which is 3. Thus, we return [2,4,6].
Note that [2,6,4], [6,2,4], etc. are also accepted.
Example 2:
Input: finalSum = 7
Output: []
Explanation: There are no valid splits for the given finalSum.
Thus, we return an empty array.
Example 3:
Input: finalSum = 28
Output: [6,8,2,12]
Explanation: The following are some valid splits: (2 + 26)
, (6 + 8 + 2 + 12)
, and (4 + 24)
.
(6 + 8 + 2 + 12)
has the maximum number of integers, which is 4. Thus, we return [6,8,2,12].
Note that [10,2,4,12], [6,2,4,16], etc. are also accepted.
Constraints:
1 <= finalSum <= 1010
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
vector<long long> maximumEvenSplit(long long finalSum) {
if (finalSum & 1) {
return {};
}
vector<long long> res;
for (long long i = 2;; i += 2) {
if (finalSum >= i) {
finalSum -= i;
res.push_back(i);
}
if (finalSum == 0) {
break;
}
if (res.back() >= finalSum) {
break;
}
}
if (!res.empty() && res.back() >= finalSum) {
res.back() += finalSum;
finalSum = 0;
}
if (finalSum) {
res.push_back(finalSum);
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 统计数组中好三元组数目
- Difficulty: Hard
- Tag:
给你两个下标从 0 开始且长度为 n
的整数数组 nums1
和 nums2
,两者都是 [0, 1, …, n - 1]
的 排列 。
好三元组 指的是 3
个 互不相同 的值,且它们在数组 nums1
和 nums2
中出现顺序保持一致。换句话说,如果我们将 pos1v
记为值 v
在 nums1
中出现的位置,pos2v
为值 v
在 nums2
中的位置,那么一个好三元组定义为 0 <= x, y, z <= n - 1
,且 pos1x < pos1y < pos1z
和 pos2x < pos2y < pos2z
都成立的 (x, y, z)
。
请你返回好三元组的 总数目 。
示例 1:
输入:nums1 = [2,0,1,3], nums2 = [0,1,2,3]
输出:1
解释:
总共有 4 个三元组 (x,y,z) 满足 pos1x < pos1y < pos1z ,分别是 (2,0,1) ,(2,0,3) ,(2,1,3) 和 (0,1,3) 。
这些三元组中,只有 (0,1,3) 满足 pos2x < pos2y < pos2z 。所以只有 1 个好三元组。
示例 2:
输入:nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
输出:4
解释:总共有 4 个好三元组 (4,0,3) ,(4,0,2) ,(4,1,3) 和 (4,1,2) 。
提示:
n == nums1.length == nums2.length
3 <= n <= 105
0 <= nums1[i], nums2[i] <= n - 1
nums1
和nums2
是[0, 1, …, n - 1]
的排列。
Metadata
- Link: Count Good Triplets in an Array
- Difficulty: Hard
- Tag:
You are given two 0-indexed arrays nums1
and nums2
of length n
, both of which are permutations of [0, 1, …, n - 1]
.
A good triplet is a set of 3
distinct values which are present in increasing order by position both in nums1
and nums2
. In other words, if we consider pos1v
as the index of the value v
in nums1
and pos2v
as the index of the value v
in nums2
, then a good triplet will be a set (x, y, z)
where 0 <= x, y, z <= n - 1
, such that pos1x < pos1y < pos1z
and pos2x < pos2y < pos2z
.
Return the total number of good triplets.
Example 1:
Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
Output: 1
Explanation:
There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3).
Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
Example 2:
Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
Output: 4
Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
Constraints:
n == nums1.length == nums2.length
3 <= n <= 105
0 <= nums1[i], nums2[i] <= n - 1
nums1
andnums2
are permutations of[0, 1, …, n - 1]
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
struct BIT {
vector<ll> a;
int n;
void init(int n) {
this->n = n + 10;
a = vector<ll>(this->n, 0);
}
int lowbit(int x) {
return x & -x;
}
void add(int x, ll v) {
for (int i = x; i < n; i += lowbit(i)) a[i] += v;
}
ll query(int x) {
ll ret = 0;
for (int i = x; i > 0; i -= lowbit(i)) ret += a[i];
return ret;
}
ll query(int l, int r) {
if (l > r)
return 0;
return query(r) - query(l - 1);
}
void add(int l, int r, ll v) {
if (l > r)
return;
add(l, v);
add(r + 1, -v);
}
} bf, bg;
class Solution {
public:
long long goodTriplets(vector<int> &nums1, vector<int> &nums2) {
int n = nums1.size();
vector<int> pos(n + 1, 0);
for (int i = 0; i < n; i++) {
pos[nums2[i]] = i;
}
bf.init(n);
bg.init(n);
vector<ll> f(n + 1, 0), g(n + 1, 0);
{
for (int i = n - 1; i >= 0; i--) {
int x = nums1[i], y = pos[x];
f[x] = bf.query(y + 1);
// dbg(i, f[x]);
bf.add(1, y, 1);
}
}
{
for (int i = n - 1; i >= 0; i--) {
int x = nums1[i], y = pos[x];
g[x] = bg.query(y + 1);
// dbg(i, g[x]);
bg.add(1, y, f[x]);
}
}
long long res = 0;
for (int i = 0; i < n; i++) {
res += g[i];
}
return res;
}
};
#ifdef LOCAL
int main() {
{
auto s = new Solution();
auto a = vector<int>{2, 0, 1, 3};
auto b = vector<int>{0, 1, 2, 3};
auto ans = s->goodTriplets(a, b);
dbg(ans);
}
return 0;
}
#endif