跳转至

1646.get-maximum-in-generated-array

Statement

Metadata

给你一个整数 n 。按下述规则生成一个长度为 n + 1 的数组 nums

  • nums[0] = 0
  • nums[1] = 1
  • 2 <= 2 * i <= n 时,nums[2 * i] = nums[i]
  • 2 <= 2 * i + 1 <= n 时,nums[2 * i + 1] = nums[i] + nums[i + 1]

返回生成数组 nums 中的 最大 值。

 

示例 1:

输入:n = 7
输出:3
解释:根据规则:
  nums[0] = 0
  nums[1] = 1
  nums[(1 * 2) = 2] = nums[1] = 1
  nums[(1 * 2) + 1 = 3] = nums[1] + nums[2] = 1 + 1 = 2
  nums[(2 * 2) = 4] = nums[2] = 1
  nums[(2 * 2) + 1 = 5] = nums[2] + nums[3] = 1 + 2 = 3
  nums[(3 * 2) = 6] = nums[3] = 2
  nums[(3 * 2) + 1 = 7] = nums[3] + nums[4] = 2 + 1 = 3
因此,nums = [0,1,1,2,1,3,2,3],最大值 3

示例 2:

输入:n = 2
输出:1
解释:根据规则,nums[0]、nums[1] 和 nums[2] 之中的最大值是 1

示例 3:

输入:n = 3
输出:2
解释:根据规则,nums[0]、nums[1]、nums[2] 和 nums[3] 之中的最大值是 2

 

提示:

  • 0 <= n <= 100

Metadata

You are given an integer n. A 0-indexed integer array nums of length n + 1 is generated in the following way:

  • nums[0] = 0
  • nums[1] = 1
  • nums[2 * i] = nums[i] when 2 <= 2 * i <= n
  • nums[2 * i + 1] = nums[i] + nums[i + 1] when 2 <= 2 * i + 1 <= n

Return the maximum integer in the array nums​​​.

 

Example 1:

Input: n = 7
Output: 3
Explanation: According to the given rules:
  nums[0] = 0
  nums[1] = 1
  nums[(1 * 2) = 2] = nums[1] = 1
  nums[(1 * 2) + 1 = 3] = nums[1] + nums[2] = 1 + 1 = 2
  nums[(2 * 2) = 4] = nums[2] = 1
  nums[(2 * 2) + 1 = 5] = nums[2] + nums[3] = 1 + 2 = 3
  nums[(3 * 2) = 6] = nums[3] = 2
  nums[(3 * 2) + 1 = 7] = nums[3] + nums[4] = 2 + 1 = 3
Hence, nums = [0,1,1,2,1,3,2,3], and the maximum is max(0,1,1,2,1,3,2,3) = 3.

Example 2:

Input: n = 2
Output: 1
Explanation: According to the given rules, nums = [0,1,1]. The maximum is max(0,1,1) = 1.

Example 3:

Input: n = 3
Output: 2
Explanation: According to the given rules, nums = [0,1,1,2]. The maximum is max(0,1,1,2) = 2.

 

Constraints:

  • 0 <= n <= 100

Solution

class Solution:
    def getMaximumGenerated(self, n: int) -> int:
        if n == 0:
            return 0

        f = [0 for i in range(n + 1)]
        f[1] = 1

        for i in range(1, n + 1):
            if (2 * i) <= n:
                f[2 * i] = f[i]
            if (2 * i + 1) <= n:
                f[2 * i + 1] = f[i] + f[i + 1]

        return max(f)

最后更新: January 15, 2023
回到页面顶部