跳转至

二维莫队

二维莫队,顾名思义就是每个状态有四个方向可以扩展。

二维莫队每次移动指针要操作一行或者一列的数,具体实现方式与普通的一维莫队类似,这里不再赘述。这里重点讲块长选定部分。

块长选定

记询问次数为 ,当前矩阵的左上角坐标为 ,右下角坐标为 ,取块长为

那么指针 移动了 次,而指针 移动了 次。

所以只需令 ,即 即可。

注意这样计算 的结果 可能为 注意特判

最终,计算部分时间复杂度是 ,加上对询问的排序过程,总时间复杂度为

例题 1

BZOJ 2639 矩形计算

输入一个 的矩阵,矩阵的每一个元素都是一个整数,然后有 个询问,每次询问一个子矩阵的权值。矩阵的权值是这样定义的,对于一个整数 ,如果它在该矩阵中出现了 次,那么它给该矩阵的权值就贡献

数据范围: 矩阵元素大小

解题思路

先离散化,二维莫队时用一个数组记录每个数当前出现的次数即可。

示例代码
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;

int n, m, q, a[201][201];
long long ans[100001];
int disc[250001], cntdisc;  // 离散化用

int blocklen, counts[40001];
long long now;

struct Question {
  int x1, y1, x2, y2, qid;

  bool operator<(Question tmp) const {
    if (x1 / blocklen != tmp.x1 / blocklen) return x1 < tmp.x1;
    if (y1 / blocklen != tmp.y1 / blocklen) return y1 < tmp.y1;
    if (x2 / blocklen != tmp.x2 / blocklen) return x2 < tmp.x2;
    return y2 < tmp.y2;
  }
} Q[100001];

int Qcnt;

void mo_algo_row(int id, int val, int Y1, int Y2) {
  for (int i = Y1; i <= Y2; i++)
    now -= (long long)counts[a[id][i]] * counts[a[id][i]],
        counts[a[id][i]] += val,
        now += (long long)counts[a[id][i]] * counts[a[id][i]];
}

void mo_algo_column(int id, int val, int X1, int X2) {
  for (int i = X1; i <= X2; i++)
    now -= (long long)counts[a[i][id]] * counts[a[i][id]],
        counts[a[i][id]] += val,
        now += (long long)counts[a[i][id]] * counts[a[i][id]];
}

void mo_algo() {
  blocklen = pow(n * m, 0.5) / pow(q, 0.25);
  if (blocklen < 1) blocklen = 1;
  sort(Q + 1, Q + 1 + Qcnt);

  int X1 = 1, Y1 = 1, X2 = 0, Y2 = 0;
  for (int i = 1; i <= Qcnt; i++) {
    while (X1 > Q[i].x1) mo_algo_row(--X1, 1, Y1, Y2);
    while (X2 < Q[i].x2) mo_algo_row(++X2, 1, Y1, Y2);
    while (Y1 > Q[i].y1) mo_algo_column(--Y1, 1, X1, X2);
    while (Y2 < Q[i].y2) mo_algo_column(++Y2, 1, X1, X2);
    while (X1 < Q[i].x1) mo_algo_row(X1++, -1, Y1, Y2);
    while (X2 > Q[i].x2) mo_algo_row(X2--, -1, Y1, Y2);
    while (Y1 < Q[i].y1) mo_algo_column(Y1++, -1, X1, X2);
    while (Y2 > Q[i].y2) mo_algo_column(Y2--, -1, X1, X2);
    ans[Q[i].qid] = now;
  }
}

int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  cin >> n >> m;
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++) cin >> a[i][j], disc[++cntdisc] = a[i][j];
  sort(disc + 1, disc + 1 + cntdisc);
  cntdisc = unique(disc + 1, disc + cntdisc + 1) - disc - 1;
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
      a[i][j] = lower_bound(disc + 1, disc + 1 + cntdisc, a[i][j]) - disc;
  cin >> q;
  for (int i = 1; i <= q; i++) {
    int x1, y1, x2, y2;
    cin >> x1 >> y1 >> x2 >> y2;
    if (x1 > x2) swap(x1, x2);
    if (y1 > y2) swap(y1, y2);
    Q[++Qcnt] = {x1, y1, x2, y2, i};
  }

  mo_algo();
  for (int i = 1; i <= q; ++i) cout << ans[i] << '\n';
  return 0;
}

例题 2

洛谷 P1527 [国家集训队] 矩阵乘法

给你一个 的矩阵, 次询问,每次询问一个子矩形的第 小数。

数据范围:

首先和上一题一样,需要离散化整个矩阵。但是需要注意,本题除了需要对数值进行分块,还需要对数值的值域进行分块,才能求出答案。

这里还需要用到奇偶化排序进行优化,具体内容请见 普通莫队算法

对于本题而言,时间限制不那么宽,注意代码常数的处理。取的块长计算值普遍较小, 都取最大值时块长大约在 左右,可以直接设定为常数来节约代码耗时。

示例代码
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

int n, q, a[501][501], ans[60001];
int disc[250001], cntdisc;  // 离散化用
int nn;

int blockId[501], blocklen;               // 分块
int rangeblockId[250001], rangeblocklen;  // 值域分块
int counts[250001], countsum[501];        // 该值次数及值域块总和

struct Position {
  int x, y;
};

vector<Position> pos[250001];

struct Question {
  int x1, y1, x2, y2, k, qid;

  bool operator<(Question tmp) const {
    if (blockId[x1] != blockId[tmp.x1]) return blockId[x1] < blockId[tmp.x1];
    if (blockId[y1] != blockId[tmp.y1])
      return blockId[x1] & 1 ? y1 < tmp.y1 : y1 > tmp.y1;
    if (blockId[y2] != blockId[tmp.y2])
      return blockId[y1] & 1 ? y2 < tmp.y2 : y2 > tmp.y2;
    else
      return blockId[y2] & 1 ? x2 < tmp.x2 : x2 > tmp.x2;
  }
} Q[60001];

int Qcnt;

void mo_algo() {
  blocklen = 11;
  for (int i = 1; i <= n; ++i) blockId[i] = (i - 1) / blocklen + 1;
  rangeblocklen = n + 1;
  for (int i = 1; i <= nn; ++i) rangeblockId[i] = (i - 1) / rangeblocklen + 1;
  counts[a[1][1]] = countsum[rangeblockId[a[1][1]]] = 1;
  sort(Q + 1, Q + 1 + Qcnt);

  int L = 1, R = 1, D = 1, U = 1;
  for (int i = 1; i <= q; ++i) {
    while (R < Q[i].y2) {
      ++R;
      for (int i = U; i <= D; ++i)
        ++counts[a[i][R]], ++countsum[rangeblockId[a[i][R]]];
    }
    while (L > Q[i].y1) {
      --L;
      for (int i = U; i <= D; ++i)
        ++counts[a[i][L]], ++countsum[rangeblockId[a[i][L]]];
    }
    while (D < Q[i].x2) {
      ++D;
      for (int i = L; i <= R; ++i)
        ++counts[a[D][i]], ++countsum[rangeblockId[a[D][i]]];
    }
    while (U > Q[i].x1) {
      --U;
      for (int i = L; i <= R; ++i)
        ++counts[a[U][i]], ++countsum[rangeblockId[a[U][i]]];
    }
    while (R > Q[i].y2) {
      for (int i = U; i <= D; ++i)
        --counts[a[i][R]], --countsum[rangeblockId[a[i][R]]];
      --R;
    }
    while (L < Q[i].y1) {
      for (int i = U; i <= D; ++i)
        --counts[a[i][L]], --countsum[rangeblockId[a[i][L]]];
      ++L;
    }
    while (D > Q[i].x2) {
      for (int i = L; i <= R; ++i)
        --counts[a[D][i]], --countsum[rangeblockId[a[D][i]]];
      --D;
    }
    while (U < Q[i].x1) {
      for (int i = L; i <= R; ++i)
        --counts[a[U][i]], --countsum[rangeblockId[a[U][i]]];
      ++U;
    }
    int res = 1, cnt = 0;
    while (cnt + countsum[res] < Q[i].k && res <= rangeblockId[nn])
      cnt += countsum[res], ++res;
    res = (res - 1) * rangeblocklen + 1;
    while (cnt + counts[res] < Q[i].k && res <= nn) cnt += counts[res], ++res;
    ans[Q[i].qid] = disc[res];
  }
}

int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  cin >> n >> q;
  nn = n * n;
  for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= n; ++j) {
      int x;
      cin >> x;
      a[i][j] = disc[++cntdisc] = x;
    }
  sort(disc + 1, disc + 1 + cntdisc);
  cntdisc = unique(disc + 1, disc + cntdisc + 1) - disc - 1;
  for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= n; ++j)
      a[i][j] = lower_bound(disc + 1, disc + 1 + cntdisc, a[i][j]) - disc;
  for (int i = 1; i <= q; ++i) {
    int x1, y1, x2, y2, k;
    cin >> x1 >> y1 >> x2 >> y2 >> k;
    Q[++Qcnt] = {x1, y1, x2, y2, k, i};
  }

  mo_algo();
  for (int i = 1; i <= q; ++i) cout << ans[i] << '\n';
  return 0;
}

最后更新: 2023年9月24日
创建日期: 2023年5月17日
回到页面顶部