快速数论变换
简介
数论变换(number-theoretic transform, NTT)是离散傅里叶变换(DFT)在数论基础上的实现;快速数论变换(fast number-theoretic transform, FNTT)是 快速傅里叶变换(FFT)在数论基础上的实现。
数论变换 是一种计算卷积(convolution)的快速算法。最常用算法就包括了前文提到的快速傅里叶变换。然而快速傅立叶变换具有一些实现上的缺点,举例来说,资料向量必须乘上复数系数的矩阵加以处理,而且每个复数系数的实部和虚部是一个正弦及余弦函数,因此大部分的系数都是浮点数,也就是说,必须做复数而且是浮点数的运算,因此计算量会比较大,而且浮点数运算产生的误差会比较大。
NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,数也比较大。目前最常见的模数是 998244353。
前置知识
学习数论变换需要前置知识:离散傅里叶变换、生成子群、原根、离散对数。相关知识可以在对应页面中学习,此处不再赘述。
定义
数论变换
在数学中,NTT 是关于任意 环 上的离散傅立叶变换(DFT)。在有限域的情况下,通常称为数论变换(NTT)。
数论变换(NTT)是通过将离散傅立叶变换化为
因为这里涉及到数论变化,所以
常见的有:
就是
迭代到长度
快速数论变换
快速数论变换(FNTT)是数论变换(NTT)增加分治操作之后的快速算法。
快速数论变换使用的分治办法,与快速傅里叶变换使用的分治办法完全一致。这意味着,只需在快速傅里叶变换的代码基础上进行简单修改,即可得到快速数论变换的代码。
在算法竞赛中常提到的 NTT 一词,往往实际指的是快速数论变换,一般默认「数论变换」是指「快速数论变换」。
这样简写的逻辑与快速傅里叶变换相似。事实上,「快速傅里叶变换」(FFT)一词指的是「快速离散傅里叶变换」(FDFT),但由于「快速」只能作用于离散,甚至是本原单位根阶数为
数论变换或快速数论变换是在取模意义下进行的操作,不存在连续的情形,永远是离散的,自然也无需提到离散一词。
在算法领域,不进行提速的操作是无意义的。在快速傅里叶变换中介绍 DFT 一词,是因为 DFT 在信号处理、图像处理领域也有其他的具体应用,同时 DFT 也是 FFT 的原理或前置知识。
在不引起混淆的情形下,常用 NTT 来代指 FNTT。为了不引起下文进一步介绍的混淆,下文的 NTT 与 FNTT 两个词进行了分离。
DFT、FFT、NTT、FNTT 的具体关系是:
-
在 DFT 与 NTT 的基础上,增加分治操作,得到 FFT 与 FNTT。分治操作的办法与原理,可以参见快速傅里叶变换一文。
-
在 DFT 与 FFT 的基础上,将复数加法与复数乘法替换为模
意义下的加法和乘法,一般大小限制在 到 之间;将本原单位根改为模 意义下的相同阶数的本原单位根,阶数为 的幂,即可得到 NTT 与 FNTT。
由于替换的运算只涉及加法和乘法,因此 DFT、FFT、NTT、FNTT 拥有相同的原理,均在满足加法与乘法的环上进行,无需域上满足除法运算的更加严格的条件。
事实上,只要拥有原根,即群论中的生成元,该模数下的 NTT 或 FNTT 即可进行。考虑到模数为
模板
下面是一个大数相乘的模板,参考来源。
参考代码
#include <algorithm>
#include <bitset>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <vector>
using namespace std;
int read() {
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
x = 10 * x + ch - '0';
ch = getchar();
}
return x * f;
}
void print(int x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
constexpr int N = 300100, P = 998244353;
int qpow(int x, int y) {
int res(1);
while (y) {
if (y & 1) res = 1ll * res * x % P;
x = 1ll * x * x % P;
y >>= 1;
}
return res;
}
int r[N];
void ntt(int *x, int lim, int opt) {
int i, j, k, m, gn, g, tmp;
for (i = 0; i < lim; ++i)
if (r[i] < i) swap(x[i], x[r[i]]);
for (m = 2; m <= lim; m <<= 1) {
k = m >> 1;
gn = qpow(3, (P - 1) / m);
for (i = 0; i < lim; i += m) {
g = 1;
for (j = 0; j < k; ++j, g = 1ll * g * gn % P) {
tmp = 1ll * x[i + j + k] * g % P;
x[i + j + k] = (x[i + j] - tmp + P) % P;
x[i + j] = (x[i + j] + tmp) % P;
}
}
}
if (opt == -1) {
reverse(x + 1, x + lim);
int inv = qpow(lim, P - 2);
for (i = 0; i < lim; ++i) x[i] = 1ll * x[i] * inv % P;
}
}
int A[N], B[N], C[N];
char a[N], b[N];
int main() {
int i, lim(1), n;
scanf("%s", &a);
n = strlen(a);
for (i = 0; i < n; ++i) A[i] = a[n - i - 1] - '0';
while (lim < (n << 1)) lim <<= 1;
scanf("%s", &b);
n = strlen(b);
for (i = 0; i < n; ++i) B[i] = b[n - i - 1] - '0';
while (lim < (n << 1)) lim <<= 1;
for (i = 0; i < lim; ++i) r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
ntt(A, lim, 1);
ntt(B, lim, 1);
for (i = 0; i < lim; ++i) C[i] = 1ll * A[i] * B[i] % P;
ntt(C, lim, -1);
int len(0);
for (i = 0; i < lim; ++i) {
if (C[i] >= 10) len = i + 1, C[i + 1] += C[i] / 10, C[i] %= 10;
if (C[i]) len = max(len, i);
}
while (C[len] >= 10) C[len + 1] += C[len] / 10, C[len] %= 10, len++;
for (i = len; ~i; --i) putchar(C[i] + '0');
puts("");
return 0;
}
参考资料与拓展阅读
- FWT(快速沃尔什变换)零基础详解 qaq(ACM/OI)
- FFT(快速傅里叶变换)0 基础详解!附 NTT(ACM/OI)
- Number-theoretic transform(NTT) - Wikipedia
- Tutorial on FFT/NTT—The tough made simple. (Part 1)
创建日期: 2018年7月11日