快速傅里叶变换
前置知识:复数。
本文将介绍一种算法,它支持在
引入
我们现在引入两个多项式
两个多项式相乘的积
很明显,多项式
能否加速使得它的时间复杂度降低呢?如果使用快速傅里叶变换的话,那么我们可以使得其复杂度降低到
傅里叶变换
傅里叶变换(Fourier Transform)是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,傅里叶变换用正弦波作为信号的成分。
设
它的逆变换是
逆变换的形式与正变换非常类似,分母
傅里叶变换相当于将时域的函数与周期为
傅里叶变换有相应的卷积定理,可以将时域的卷积转化为频域的乘积,也可以将频域的卷积转化为时域的乘积。
离散傅里叶变换
离散傅里叶变换(Discrete Fourier transform,DFT)是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其 DTFT(discrete-time Fourier transform)的频域采样。
傅里叶变换是积分形式的连续的函数内积,离散傅里叶变换是求和形式的内积。
设
其中
类似于积分形式,它的 逆离散傅里叶变换(IDFT)为:
可以记为:
实际上,DFT 和 IDFT 变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT 和 IDFT 前的系数分别为
离散傅里叶变换仍旧是时域到频域的变换。由于求和形式的特殊性,可以有其他的解释方法。
如果把序列
这便构成了卷积定理的另一种解释办法,即对多项式进行特殊的求值操作。离散傅里叶变换恰好是多项式在单位根处进行求值。
例如计算:
定义函数
然后可以发现,代入四次单位根
于是下面的求和恰好可以把其余各项消掉:
因此这道数学题的答案为:
这道数学题在单位根处求值,恰好构成离散傅里叶变换。
矩阵公式
由于离散傅立叶变换是一个 线性 算子,所以它可以用矩阵乘法来描述。在矩阵表示法中,离散傅立叶变换表示如下:
其中
快速傅里叶变换
FFT 是一种高效实现 DFT 的算法,称为快速傅立叶变换(Fast Fourier Transform,FFT)。它对傅里叶变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。快速数论变换(NTT)是快速傅里叶变换(FFT)在数论基础上的实现。
在 1965 年,Cooley 和 Tukey 发表了快速傅里叶变换算法。事实上 FFT 早在这之前就被发现过了,但是在当时现代计算机并未问世,人们没有意识到 FFT 的重要性。一些调查者认为 FFT 是由 Runge 和 König 在 1924 年发现的。但事实上高斯早在 1805 年就发明了这个算法,但一直没有发表。
分治法实现
FFT 算法的基本思想是分治。就 DFT 来说,它分治地来求当
举个例子,对于一共
按照次数的奇偶来分成两组,然后右边提出来一个
分别用奇偶次次项数建立新的函数:
那么原来的
利用偶数次单位根的性质
和:
因此我们求出了
考虑到分治 DFT 能处理的多项式长度只能是
在代入值的时候,因为要代入
代码实现方面,STL 提供了复数的模板,当然也可以手动实现。两者区别在于,使用 STL 的 complex
可以调用 exp
函数求出
以上就是 FFT 算法中 DFT 的介绍,它将一个多项式从系数表示法变成了点值表示法。
值的注意的是,因为是单位复根,所以说我们需要令
递归版 FFT
#include <cmath>
#include <complex>
using Comp = std::complex<double>; // STL complex
constexpr Comp I(0, 1); // i
constexpr int MAX_N = 1 << 20;
Comp tmp[MAX_N];
// rev=1,DFT; rev=-1,IDFT
void DFT(Comp* f, int n, int rev) {
if (n == 1) return;
for (int i = 0; i < n; ++i) tmp[i] = f[i];
// 偶数放左边,奇数放右边
for (int i = 0; i < n; ++i) {
if (i & 1)
f[n / 2 + i / 2] = tmp[i];
else
f[i / 2] = tmp[i];
}
Comp *g = f, *h = f + n / 2;
// 递归 DFT
DFT(g, n / 2, rev), DFT(h, n / 2, rev);
// cur 是当前单位复根,对于 k = 0 而言,它对应的单位复根 omega^0_n = 1。
// step 是两个单位复根的差,即满足 omega^k_n = step*omega^{k-1}*n,
// 定义等价于 exp(I*(2*M_PI/n*rev))
Comp cur(1, 0), step(cos(2 * M_PI / n), sin(2 * M_PI * rev / n));
for (int k = 0; k < n / 2;
++k) { // F(omega^k_n) = G(omega^k*{n/2}) + omega^k*n\*H(omega^k*{n/2})
tmp[k] = g[k] + cur * h[k];
// F(omega^{k+n/2}*n) = G(omega^k*{n/2}) - omega^k_n*H(omega^k\_{n/2})
tmp[k + n / 2] = g[k] - cur * h[k];
cur *= step;
}
for (int i = 0; i < n; ++i) f[i] = tmp[i];
}
时间复杂度
倍增法实现
这个算法还可以从「分治」的角度继续优化。对于基 - 2 FFT,我们每一次都会把整个多项式的奇数次项和偶数次项系数分开,一直分到只剩下一个系数。但是,这个递归的过程需要更多的内存。因此,我们可以先「模仿递归」把这些系数在原数组中「拆分」,然后再「倍增」地去合并这些算出来的值。
对于「拆分」,可以使用位逆序置换实现。
对于「合并」,使用蝶形运算优化可以做到只用
位逆序置换
以
- 初始序列为
- 一次二分之后
- 两次二分之后
- 三次二分之后
规律:其实就是原来的那个序列,每个数用二进制表示,然后把二进制翻转对称一下,就是最终那个位置的下标。比如
根据它的定义,我们可以在
位逆序置换实现( )
/*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
* len 必须为 2 的幂
*/
void change(Complex y[], int len) {
// 一开始 i 是 0...01,而 j 是 10...0,在二进制下相反对称。
// 之后 i 逐渐加一,而 j 依然维持着和 i 相反对称,一直到 i = 1...11。
for (int i = 1, j = len / 2, k; i < len - 1; i++) {
// 交换互为小标反转的元素,i < j 保证交换一次
if (i < j) swap(y[i], y[j]);
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的。
// 这里 k 代表了 0 出现的最高位。j 先减去高位的全为 1 的数字,直到遇到了
// 0,之后再加上即可。
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
实际上,位逆序置换可以
首先
我们从小到大求
考虑个位的翻转结果:如果个位是
举个例子:设
- 考虑
,我们知道 ,再右移一位就得到了 。 - 考虑个位,如果是
,它就要翻转到数的最高位,即翻转数加上 ,如果是 则不用更改。
位逆序置换实现( )
蝶形运算优化
已知
使用位逆序置换后,对于给定的
的值存储在数组下标为 的位置, 的值存储在数组下标为 的位置。 的值将存储在数组下标为 的位置, 的值将存储在数组下标为 的位置。
因此可以直接在数组下标为
再详细说明一下如何借助蝶形运算完成所有段长度为
- 令段长度为
; - 同时枚举序列
的左端点 和序列 的左端点 ; - 合并两个段时,枚举
,此时 存储在数组下标为 的位置, 存储在数组下标为 的位置; - 使用蝶形运算求出
和 ,然后直接在原位置覆写。
快速傅里叶逆变换
傅里叶逆变换可以用傅里叶变换表示。对此我们有两种理解方式。
线性代数角度
IDFT(傅里叶反变换)的作用,是把目标多项式的点值形式转换成系数形式。而 DFT 本身是个线性变换,可以理解为将目标多项式当作向量,左乘一个矩阵得到变换后的向量,以模拟把单位复根代入多项式的过程:
现在我们已经得到最左边的结果了,中间的
由于这个矩阵的元素非常特殊,它的逆矩阵也有特殊的性质,就是每一项 取倒数,再 除以变换的长度
注意:傅里叶变换的长度,并不是多项式的长度,变换的长度应比乘积多项式的长度长。待相乘的多项式不够长,需要在高次项处补
为了使计算的结果为原来的倒数,根据欧拉公式,可以得到
因此我们可以尝试着把单位根
单位复根周期性
利用单位复根的周期性同样可以理解 IDFT 与 DFT 之间的关系。
考虑原本的多项式是
考虑 构造法。我们已知
相当于把
这时我们有两种推导方式,这对应了两种实现方法。
方法一
设
对
记
当
当
也就是说
那么代回原式
也就是说给定点
综上所述,我们取单位根为其倒数,对
方法二
我们直接将
推导的过程与方法一大同小异,最终我们得到
当且仅当
这意味着我们将
代码实现
所以我们 FFT 函数可以集 DFT 和 IDFT 于一身。代码实现如下:
非递归版 FFT(对应方法一)
/*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
// 位逆序置换
change(y, len);
// 模拟合并过程,一开始,从长度为一合并到长度为二,一直合并到长度为 len。
for (int h = 2; h <= len; h <<= 1) {
// wn:当前单位复根的间隔:w^1_h
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
// 合并,共 len / h 次。
for (int j = 0; j < len; j += h) {
// 计算当前单位复根,一开始是 1 = w^0_n,之后是以 wn 为间隔递增: w^1_n
// ...
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
// 左侧部分和右侧是子问题的解
Complex u = y[k];
Complex t = w * y[k + h / 2];
// 这就是把两部分分治的结果加起来
y[k] = u + t;
y[k + h / 2] = u - t;
// 后半个 「step」 中的ω一定和 「前半个」 中的成相反数
// 「红圈」上的点转一整圈「转回来」,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
// 如果是 IDFT,它的逆矩阵的每一个元素不只是原元素取倒数,还要除以长度 len。
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
y[i].y /= len;
}
}
}
非递归版 FFT(对应方法二)
/*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) { // 模拟合并过程
Complex wn(cos(2 * PI / h), sin(2 * PI / h)); // 计算当前单位复根
for (int j = 0; j < len; j += h) {
Complex w(1, 0); // 计算当前单位复根
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t; // 这就是把两部分分治的结果加起来
y[k + h / 2] = u - t;
// 后半个 「step」 中的ω一定和 「前半个」 中的成相反数
// 「红圈」上的点转一整圈「转回来」,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
if (on == -1) {
reverse(y + 1, y + len);
for (int i = 0; i < len; i++) {
y[i].x /= len;
y[i].y /= len;
}
}
}
FFT 模板(HDU 1402 - A * B Problem Plus)
#include <cmath>
#include <cstring>
#include <iostream>
const double PI = acos(-1.0);
struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator-(const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator+(const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator*(const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
};
/*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
*len 必须为 2 的幂
*/
void change(Complex y[], int len) {
int i, j, k;
for (int i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) std::swap(y[i], y[j]);
// 交换互为小标反转的元素,i<j 保证交换一次
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
/*
* 做 FFT
*len 必须是 2^k 形式
*on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) {
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
for (int j = 0; j < len; j += h) {
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
constexpr int MAXN = 200020;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN / 2];
int sum[MAXN];
using std::cin;
using std::cout;
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
while (cin >> str1 >> str2) {
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = 1;
while (len < len1 * 2 || len < len2 * 2) len <<= 1;
for (int i = 0; i < len1; i++) x1[i] = Complex(str1[len1 - 1 - i] - '0', 0);
for (int i = len1; i < len; i++) x1[i] = Complex(0, 0);
for (int i = 0; i < len2; i++) x2[i] = Complex(str2[len2 - 1 - i] - '0', 0);
for (int i = len2; i < len; i++) x2[i] = Complex(0, 0);
fft(x1, len, 1);
fft(x2, len, 1);
for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1);
for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
for (int i = 0; i < len; i++) {
sum[i + 1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2 - 1;
while (sum[len] == 0 && len > 0) len--;
for (int i = len; i >= 0; i--) cout << char(sum[i] + '0');
cout << '\n';
}
return 0;
}
参考文献
创建日期: 2018年7月11日