跳转至

多项式初等函数

本页面包含多项式常见的初等函数操作。具体而言,本页面包含如下内容:

  1. 多项式求逆
  2. 多项式开方
  3. 多项式除法
  4. 多项式取模
  5. 多项式指数函数
  6. 多项式对数函数
  7. 多项式三角函数
  8. 多项式反三角函数
初等函数与非初等函数

初等函数的定义如下1

若域 中存在映射 满足:

则称这个域为 微分域

若微分域 上的函数 满足以下的任意一条条件,则称该函数 为初等函数:

  1. 上的代数函数。
  2. 上的指数性函数,即存在 使得 .
  3. 上的对数性函数,即存在 使得 .

以下是常见的初等函数:

  1. 代数函数:存在有限次多项式 使得 的函数 ,如 ,,,.
  2. 指数函数
  3. 对数函数
  4. 三角函数
  5. 反三角函数
  6. 双曲函数
  7. 反双曲函数
  8. 以上函数的复合,如:

以下是常见的非初等函数:

  1. 误差函数:

多项式求逆

给定多项式 ,求

解法

倍增法

首先,易知

假设现在已经求出了 在模 意义下的逆元 。 有:

两边平方可得:

两边同乘 并移项可得:

递归计算即可。

时间复杂度

Newton's Method

参见 Newton's Method.

Graeffe 法

欲求 考虑

只需求出 即可还原出 因为 是偶函数,时间复杂度同上。

代码

多项式求逆
constexpr int MAXN = 262144;
constexpr int mod = 998244353;

using i64 = long long;
using poly_t = int[MAXN];
using poly = int *const;

void polyinv(const poly &h, const int n, poly &f) {
  /* f = 1 / h = f_0 (2 - f_0 h) */
  static poly_t inv_t;
  std::fill(f, f + n + n, 0);
  f[0] = fpow(h[0], mod - 2);
  for (int t = 2; t <= n; t <<= 1) {
    const int t2 = t << 1;
    std::copy(h, h + t, inv_t);
    std::fill(inv_t + t, inv_t + t2, 0);

    DFT(f, t2);
    DFT(inv_t, t2);
    for (int i = 0; i != t2; ++i)
      f[i] = (i64)f[i] * sub(2, (i64)f[i] * inv_t[i] % mod) % mod;
    IDFT(f, t2);

    std::fill(f + t, f + t2, 0);
  }
}

例题

  1. 有标号简单无向连通图计数:「POJ 1737」Connected Graph

多项式开方

给定多项式 ,求 ,满足:

解法

倍增法

首先讨论 不为 的情况。

易知:

没有平方根,则多项式 没有平方根。

可能有多个平方根,选取不同的根会求出不同的

假设现在已经求出了 在模 意义下的平方根 ,则有:

倍增计算即可。

时间复杂度

还有一种常数较小的写法就是在倍增维护 的时候同时维护 而不是每次都求逆。

时,可能需要使用二次剩余来计算

上述方法需要知道 的逆,所以常数项不能为

,则将 分解成 ,其中

  • 是奇数,则 没有平方根。

  • 是偶数,则求出 的平方根 ,然后得到

洛谷模板题 P5205【模板】多项式开根 参考代码
#include <algorithm>
#include <iostream>
using namespace std;

constexpr int MAXN = 1 << 20, mod = 998244353;

int a[MAXN], b[MAXN], g[MAXN], gg[MAXN];

int qpow(int x, int y) {  // 快速幂
  int ans = 1;

  while (y) {
    if (y & 1) {
      ans = (long long)1 * ans * x % mod;
    }
    x = (long long)1 * x * x % mod;
    y >>= 1;
  }
  return ans;
}

int inv2 = qpow(2, mod - 2);  // 逆元

void change(int *f, int len) {
  for (int i = 1, j = len / 2; i < len - 1; i++) {
    if (i < j) {
      swap(f[i], f[j]);
    }

    int k = len / 2;
    while (j >= k) {
      j -= k;
      k /= 2;
    }
    if (j < k) {
      j += k;
    }
  }
}

void NTT(int *f, int len, int type) {  // NTT
  change(f, len);

  for (int q = 2; q <= len; q <<= 1) {
    int nxt = qpow(3, (mod - 1) / q);
    for (int i = 0; i < len; i += q) {
      int w = 1;

      for (int k = i; k < i + (q >> 1); k++) {
        int x = f[k];
        int y = (long long)1 * w * f[k + (q / 2)] % mod;

        f[k] = (x + y) % mod;
        f[k + (q / 2)] = (x - y + mod) % mod;
        w = (long long)1 * w * nxt % mod;
      }
    }
  }

  if (type == -1) {
    reverse(f + 1, f + len);
    int iv = qpow(len, mod - 2);

    for (int i = 0; i < len; i++) {
      f[i] = (long long)1 * f[i] * iv % mod;
    }
  }
}

void inv(int deg, int *f, int *h) {  // 求逆元
  if (deg == 1) {
    h[0] = qpow(f[0], mod - 2);
    return;
  }

  inv((deg + 1) >> 1, f, h);

  int len = 1;
  while (len < deg * 2) {  // 倍增
    len *= 2;
  }

  copy(f, f + deg, gg);
  fill(gg + deg, gg + len, 0);

  NTT(gg, len, 1);
  NTT(h, len, 1);
  for (int i = 0; i < len; i++) {
    h[i] = (long long)1 * (2 - (long long)1 * gg[i] * h[i] % mod + mod) % mod *
           h[i] % mod;
  }

  NTT(h, len, -1);
  fill(h + deg, h + len, 0);
}

int n, t[MAXN];

// deg:次数
// f:被开根数组
// h:答案数组
void sqrt(int deg, int *f, int *h) {
  if (deg == 1) {
    h[0] = 1;
    return;
  }

  sqrt((deg + 1) >> 1, f, h);

  int len = 1;
  while (len < deg * 2) {  // 倍增
    len *= 2;
  }
  fill(g, g + len, 0);
  inv(deg, h, g);
  copy(f, f + deg, t);
  fill(t + deg, t + len, 0);
  NTT(t, len, 1);
  NTT(g, len, 1);
  NTT(h, len, 1);

  for (int i = 0; i < len; i++) {
    h[i] = (long long)1 * inv2 *
           ((long long)1 * h[i] % mod + (long long)1 * g[i] * t[i] % mod) % mod;
  }
  NTT(h, len, -1);
  fill(h + deg, h + len, 0);
}

int main() {
  cin >> n;

  for (int i = 0; i < n; i++) {
    cin >> a[i];
  }
  sqrt(n, a, b);

  for (int i = 0; i < n; i++) {
    cout << b[i] << ' ';
  }

  return 0;
}

Newton's Method

参见 Newton's Method.

例题

  1. 「Codeforces Round #250」E. The Child and Binary Tree

多项式除法 & 取模

给定多项式 ,求 的商 和余数

解法

发现若能消除 的影响则可直接 多项式求逆 解决。

考虑构造变换

观察可知其实质为反转 的系数。

中的 替换成 并将其两边都乘上 ,得到:

注意到上式中 的系数为 ,则将其放到模 意义下即可消除 带来的影响。

又因 的次数为 ,故 不会受到影响。

则:

使用多项式求逆即可求出 ,将其反代即可得到

时间复杂度

多项式对数函数 & 指数函数

给定多项式 ,求模 意义下的

解法

普通方法

首先,对于多项式 ,若 存在,则由其 定义,其必须满足:

求导再积分,可得:

多项式的求导,积分时间复杂度为 ,求逆时间复杂度为 ,故多项式求 时间复杂度

首先,对于多项式 ,若 存在,则其必须满足:

否则 的常数项不收敛。

求导,可得:

比较两边系数可得:

使用分治 FFT 即可解决。

时间复杂度

Newton's Method

使用 Newton's Method 即可在 的时间复杂度内解决多项式

代码

多项式 ln/exp
constexpr int MAXN = 262144;
constexpr int mod = 998244353;

using i64 = long long;
using poly_t = int[MAXN];
using poly = int *const;

void derivative(const poly &h, const int n, poly &f) {
  for (int i = 1; i != n; ++i) f[i - 1] = (i64)h[i] * i % mod;
  f[n - 1] = 0;
}

void integrate(const poly &h, const int n, poly &f) {
  for (int i = n - 1; i; --i) f[i] = (i64)h[i - 1] * inv[i] % mod;
  f[0] = 0; /* C */
}

void polyln(const poly &h, const int n, poly &f) {
  /* f = ln h = ∫ h' / h dx */
  assert(h[0] == 1);
  static poly_t ln_t;
  const int t = n << 1;

  derivative(h, n, ln_t);
  std::fill(ln_t + n, ln_t + t, 0);
  polyinv(h, n, f);

  DFT(ln_t, t);
  DFT(f, t);
  for (int i = 0; i != t; ++i) ln_t[i] = (i64)ln_t[i] * f[i] % mod;
  IDFT(ln_t, t);

  integrate(ln_t, n, f);
}

void polyexp(const poly &h, const int n, poly &f) {
  /* f = exp(h) = f_0 (1 - ln f_0 + h) */
  assert(h[0] == 0);
  static poly_t exp_t;
  std::fill(f, f + n + n, 0);
  f[0] = 1;
  for (int t = 2; t <= n; t <<= 1) {
    const int t2 = t << 1;

    polyln(f, t, exp_t);
    exp_t[0] = sub(pls(h[0], 1), exp_t[0]);
    for (int i = 1; i != t; ++i) exp_t[i] = sub(h[i], exp_t[i]);
    std::fill(exp_t + t, exp_t + t2, 0);

    DFT(f, t2);
    DFT(exp_t, t2);
    for (int i = 0; i != t2; ++i) f[i] = (i64)f[i] * exp_t[i] % mod;
    IDFT(f, t2);

    std::fill(f + t, f + t2, 0);
  }
}

例题

  1. 计算

    普通做法为多项式快速幂,时间复杂度

    时,有:

    时,设 的最低次项为 ,则:

    时间复杂度

多项式三角函数

给定多项式 ,求模 意义下的

解法

首先由 Euler's formula 可以得到 三角函数的另一个表达式

那么代入 就有:

直接按上述表达式编写程序即可得到模 意义下的 。再由 可求得

代码

多项式三角函数

注意到我们是在 上做 NTT,那么相应地,虚数单位 应该被换成

constexpr int MAXN = 262144;
constexpr int mod = 998244353;
constexpr int imgunit = 86583718; /* sqrt(-1) = sqrt(998233452) */

using i64 = long long;
using poly_t = int[MAXN];
using poly = int *const;

void polytri(const poly &h, const int n, poly &sin_t, poly &cos_t) {
  /* sin(f) = (exp(i * f) - exp(- i * f)) / 2i */
  /* cos(f) = (exp(i * f) + exp(- i * f)) / 2 */
  /* tan(f) = sin(f) / cos(f) */
  assert(h[0] == 0);
  static poly_t tri1_t, tri2_t;

  for (int i = 0; i != n; ++i) tri2_t[i] = (i64)h[i] * imgunit % mod;
  polyexp(tri2_t, n, tri1_t);
  polyinv(tri1_t, n, tri2_t);

  if (sin_t != nullptr) {
    const int invi = fpow(pls(imgunit, imgunit), mod - 2);
    for (int i = 0; i != n; ++i)
      sin_t[i] = (i64)(tri1_t[i] - tri2_t[i] + mod) * invi % mod;
  }
  if (cos_t != nullptr) {
    for (int i = 0; i != n; ++i) cos_t[i] = div2(pls(tri1_t[i], tri2_t[i]));
  }
}

多项式反三角函数

给定多项式 ,求模 意义下的

解法

仿照求多项式 的方法,对反三角函数求导再积分可得:

那么代入 就有:

直接按式子求就可以了。

代码

多项式反三角函数
constexpr int MAXN = 262144;
constexpr int mod = 998244353;

using i64 = long long;
using poly_t = int[MAXN];
using poly = int *const;

void derivative(const poly &h, const int n, poly &f) {
  for (int i = 1; i != n; ++i) f[i - 1] = (i64)h[i] * i % mod;
  f[n - 1] = 0;
}

void integrate(const poly &h, const int n, poly &f) {
  for (int i = n - 1; i; --i) f[i] = (i64)h[i - 1] * inv[i] % mod;
  f[0] = 0; /* C */
}

void polyarcsin(const poly &h, const int n, poly &f) {
  /* arcsin(f) = ∫ f' / sqrt(1 - f^2) dx  */
  static poly_t arcsin_t;
  const int t = n << 1;
  std::copy(h, h + n, arcsin_t);
  std::fill(arcsin_t + n, arcsin_t + t, 0);

  DFT(arcsin_t, t);
  for (int i = 0; i != t; ++i) arcsin_t[i] = sqr(arcsin_t[i]);
  IDFT(arcsin_t, t);

  arcsin_t[0] = sub(1, arcsin_t[0]);
  for (int i = 1; i != n; ++i)
    arcsin_t[i] = arcsin_t[i] ? mod - arcsin_t[i] : 0;

  polysqrt(arcsin_t, n, f);
  polyinv(f, n, arcsin_t);
  derivative(h, n, f);

  DFT(f, t);
  DFT(arcsin_t, t);
  for (int i = 0; i != t; ++i) arcsin_t[i] = (i64)f[i] * arcsin_t[i] % mod;
  IDFT(arcsin_t, t);

  integrate(arcsin_t, n, f);
}

void polyarccos(const poly &h, const int n, poly &f) {
  /* arccos(f) = - ∫ f' / sqrt(1 - f^2) dx  */
  polyarcsin(h, n, f);
  for (int i = 0; i != n; ++i) f[i] = f[i] ? mod - f[i] : 0;
}

void polyarctan(const poly &h, const int n, poly &f) {
  /* arctan(f) = ∫ f' / (1 + f^2) dx  */
  static poly_t arctan_t;
  const int t = n << 1;
  std::copy(h, h + n, arctan_t);
  std::fill(arctan_t + n, arctan_t + t, 0);

  DFT(arctan_t, t);
  for (int i = 0; i != t; ++i) arctan_t[i] = sqr(arctan_t[i]);
  IDFT(arctan_t, t);

  inc(arctan_t[0], 1);
  std::fill(arctan_t + n, arctan_t + t, 0);

  polyinv(arctan_t, n, f);
  derivative(h, n, arctan_t);

  DFT(f, t);
  DFT(arctan_t, t);
  for (int i = 0; i != t; ++i) arctan_t[i] = (i64)f[i] * arctan_t[i] % mod;
  IDFT(arctan_t, t);

  integrate(arctan_t, n, f);
}

参考资料与链接


最后更新: 2024年10月9日
创建日期: 2023年4月16日
回到页面顶部