跳转至

向量

在本文之前,特别说明一下翻译的相关问题。由于历史原因,数学学科和物理学科关于「vector」一词的翻译不同。

在物理学科,一般翻译成「矢量」,并且与「标量」一词相对。在数学学科,一般翻译成「向量」。这种翻译的差别还有「本征」与「特征」、「幺正」与「酉」,等等。

OI Wiki,主要面向计算机等工程类相关学科,与数学学科关系更近一些,因此采用「向量」这个词汇。

定义及相关概念

向量:既有大小又有方向的量称为向量。数学上研究的向量为 自由向量,即只要不改变它的大小和方向,起点和终点可以任意平行移动的向量。记作

有向线段:带有方向的线段称为有向线段。有向线段有三要素:起点,方向,长度,知道了三要素,终点就唯一确定。一般使用有向线段表示向量。

向量的模:有向线段 的长度称为向量的模,即为这个向量的大小。记为:

零向量:模为 的向量。零向量的方向任意。记为:

单位向量:模为 的向量称为该方向上的单位向量。一般记为

平行向量:方向相同或相反的两个 非零 向量。记作:。对于多个互相平行的向量,可以任作一条直线与这些向量平行,那么任一组平行向量都可以平移到同一直线上,所以平行向量又叫 共线向量

相等向量:模相等且方向相同的向量。

相反向量:模相等且方向相反的向量。

向量的夹角:已知两个非零向量 ,作 ,那么 就是向量 与向量 的夹角。记作:。显然当 时两向量同向, 时两向量反向, 时两向量垂直,记作 ,并且规定

注意到平面向量具有方向性,两个向量不能比较大小(但可以比较两向量的模长)。但是两个向量可以相等。

向量的线性运算

向量的加减法

在定义了一种量之后,就希望让它具有运算。向量的运算可以类比数的运算,从物理学的角度出发也可以研究向量的运算。

类比物理学中的位移概念,假如一个人从 走到 ,那么他经过的位移为 ,这其实等价于这个人直接从 走到 ,即

注意到力的合成法则——平行四边形法则,同样也可以看做一些向量相加。

整理一下向量的加法法则:

  1. 向量加法的三角形法则:若要求和的向量首尾顺次相连,那么这些向量的和为第一个向量的起点指向最后一个向量的终点;
  2. 向量加法的平行四边形法则:若要求和的两个向量 共起点,那么它们的和向量为以这两个向量为邻边的平行四边形的对角线,起点为两个向量共有的起点,方向沿平行四边形对角线方向。

这样,向量的加法就具有了几何意义。并且可以验证,向量的加法满足 交换律与结合律

因为实数的减法可以写成加上相反数的形式,考虑在向量做减法时也这么写。即:

这样,考虑共起点的向量,按照平行四边形法则做出它们的差,经过平移后可以发现 「共起点向量的差向量」是由「减向量」指向「被减向量」的有向线段。这也是向量减法的几何意义。

有时候有两点 ,想知道 ,可以利用减法运算 获得。

向量的数乘

规定「实数 与向量 的积」为一个向量,这种运算就是向量的 数乘运算,记作 ,它的长度与方向规定如下:

  1. 时, 同向,当 时,,当 时, 方向相反。

根据数乘的定义,可以验证有如下运算律:

特别地:

判定两向量共线

两个 非零 向量 共线 有唯一实数 ,使得

证明:由数乘的定义可知,对于 非零 向量 ,如果存在实数 ,使得 ,那么

反过来,如果 ,且 ,那么当 同向时,,反向时

最后,向量的加,减,数乘统称为向量的线性运算。

平面向量的基本定理及坐标表示

平面向量基本定理

定理内容:如果两个向量 不共线,那么存在唯一实数对 ,使得与 共面的任意向量 满足

平面向量那么多,怎样用尽可能少的量表示出所有平面向量?

只用一个向量表示出所有向量显然是不可能的,最多只能表示出某条直线上的向量。

再加入一个向量,用两个 不共线 向量表示(两个共线向量在此可以看成同一个向量),这样可以把任意一个平面向量分解到这两个向量的方向上了。

在同一平面内的两个不共线的向量称为 基底。如果基底相互垂直,那么在分解的时候就是对向量 正交分解

平面向量的坐标表示

如果取与横轴与纵轴方向相同的单位向量 作为一组基底,根据平面向量基本定理,平面上的所有向量与有序实数对 一一对应。

而有序实数对 与平面直角坐标系上的点一一对应,于是作 ,那么终点 也是唯一确定的。由于研究的对象是自由向量,可以自由平移起点,这样,在平面直角坐标系里,每一个向量都可以用有序实数对唯一表示。

平面向量的坐标运算

平面向量线性运算

由平面向量的线性运算可以推导其坐标运算,主要方法是将坐标全部化为用基底表示,然后利用运算律进行合并,之后表示出运算结果的坐标形式。

若两向量 ,则:

求一个向量的坐标表示

已知两点 ,易证

平移一点

有时需要将一个点 沿一定方向平移某单位长度,这样把要平移的方向和距离组合成一个向量,利用向量加法的三角形法则,将 加上这个向量,得到的向量终点即为平移后的点。

三点共线的判定

三点共线,则

三点共线判定的拓展

在三角形 中,若 等分点(),则有:

在三维空间中的拓展(立体几何/空间向量)

在空间中,以上部分所述的所有内容均成立。更有:

空间向量基本定理

定理内容:如果两个向量 不共面,那么存在唯一实数对 ,使得空间中任意向量 满足 。 根据空间向量基本定理,我们同样可以使用三个相互垂直的基底 作为正交基底,建立 空间直角坐标系 并用一个三元组 作为坐标表示空间向量。

共面向量基本定理

如果存在两个不共线的向量 , 则向量 共面的充要条件是存在唯一实数对 使得

方向向量

空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置,由它经过的空间一点及它的一个方向向量 完全确定

注意,平面中的直线也有方向向量。

对于 空间 中的直线,对其方向向量有以下求法:

  • 若有 ,则 所在直线的一个方向向量为

  • 若已知一个与所求直线 垂直 的平面,该平面一般方程为 ,那么垂直于该平面的直线的一个方向向量为 ,该方向向量也是该平面的 一个法向量

法向量

对于一个面 ,其法向量 与这个面垂直。

计算方法:任取两个面内直线 ,使得 ,利用坐标法即可计算。

扩展

向量与矩阵

矩阵运算的相关法则与向量运算相似,于是考虑将向量写成矩阵形式,这样就将向量问题化为矩阵问题了。详细内容请参考线性代数。

向量旋转

,倾角为 ,长度为 。则 。令其逆时针旋转 度角,得到向量

由三角恒等变换得,

化简,

把上面的 代回来得

即使不知道三角恒等变换,这个式子也很容易记下来。

向量的更严格定义

上文中,向量被定义为了空间中的有向线段。但是严格来说,向量不仅是有向线段。要作出向量的更严格定义,需要先定义 线性空间,具体内容参见 线性空间 页面的介绍。


最后更新: 2024年11月11日
创建日期: 2018年7月11日
回到页面顶部