快速幂
定义
快速幂,二进制取幂(Binary Exponentiation,也称平方法),是一个在
这个技巧也常常用在非计算的场景,因为它可以应用在任何具有结合律的运算中。其中显然的是它可以应用于模意义下取幂、矩阵幂等运算,我们接下来会讨论。
解释
计算
过程
迭代版本
首先我们将
因为
于是我们只需要知道一个快速的方法来计算上述 3 的
因此为了计算
将上述过程说得形式化一些,如果把
其中
根据上式我们发现,原问题被我们转化成了形式相同的子问题的乘积,并且我们可以在常数时间内从
这个算法的复杂度是
递归版本
上述迭代版本中,由于
给定形式
那么有:
如上所述,在递归时,对于不同的递归深度是相同的处理:
可以观察到,每递归深入一层则二进制位减少一位,所以该算法的时间复杂度也为
实现
首先我们可以直接按照上述递归方法实现:
第二种实现方法是非递归式的。它在循环的过程中将二进制位为 1 时对应的幂累乘到答案中。尽管两者的理论复杂度是相同的,但第二种在实践过程中的速度是比第一种更快的,因为递归会花费一定的开销。
模板:Luogu P1226
应用
模意义下取幂
问题描述
计算
这是一个非常常见的应用,例如它可以用于计算模意义下的乘法逆元。
既然我们知道取模的运算不会干涉乘法运算,因此我们只需要在计算的过程中取模即可。
注意:根据费马小定理,如果
计算斐波那契数
问题描述
计算斐波那契数列第
根据斐波那契数列的递推式
多次置换
问题描述
给你一个长度为
简单地把这个置换取
注意:给这个置换建图,然后在每一个环上分别做
加速几何中对点集的操作
引入
三维空间中,
个点 ,要求将 个操作都应用于这些点。包含 3 种操作:
- 沿某个向量移动点的位置(Shift)。
- 按比例缩放这个点的坐标(Scale)。
- 绕某个坐标轴旋转(Rotate)。
还有一个特殊的操作,就是将一个操作序列重复
次(Loop),这个序列中也可能有 Loop 操作(Loop 操作可以嵌套)。现在要求你在低于 的时间内将这些变换应用到这个 个点,其中 表示把所有的 Loop 操作展开后的操作序列的长度。
解释
让我们来观察一下这三种操作对坐标的影响:
- Shift 操作:将每一维的坐标分别加上一个常量;
- Scale 操作:把每一维坐标分别乘上一个常量;
- Rotate 操作:这个有点复杂,我们不打算深入探究,不过我们仍然可以使用一个线性组合来表示新的坐标。
可以看到,每一个变换可以被表示为对坐标的线性运算,因此,一个变换可以用一个
使用这个矩阵就可以将一个坐标(向量)进行变换,得到新的坐标(向量):
你可能会问,为什么一个三维坐标会多一个 1 出来?原因在于,如果没有这个多出来的 1,我们没法使用矩阵的线性变换来描述 Shift 操作。
过程
接下来举一些简单的例子来说明我们的思路:
-
Shift 操作:让
坐标方向的位移为 , 坐标的位移为 , 坐标的位移为 : -
Scale 操作:把
坐标拉伸 10 倍, 坐标拉伸 5 倍: -
Rotate 操作:绕
轴旋转 弧度,遵循右手定则(逆时针方向)
现在,每一种操作都被表示为了一个矩阵,变换序列可以用矩阵的乘积来表示,而一个 Loop 操作相当于取一个矩阵的 k 次幂。这样可以用
定长路径计数
问题描述
给一个有向图(边权为 1),求任意两点
我们把该图的邻接矩阵 M 取 k 次幂,那么
模意义下大整数乘法
计算
。
与二进制取幂的思想一样,这次我们将其中的一个乘数表示为若干个 2 的整数次幂的和的形式。因为在对一个数做乘 2 并取模的运算的时侯,我们可以转化为加减操作防止溢出。这样仍可以在
快速乘
但是 long long
范围内、不需要使用黑科技 __int128
的、复杂度为
我们发现:
我们巧妙运用 unsigned long long
的自然溢出:
于是在算出 unsigned long long
直接计算,现在我们只需要解决如何计算
我们考虑先使用 long double
算出
既然使用了 long double
,就无疑会有精度误差。极端情况就是第一个有效数字(二进制下)在小数点后一位。在 x86-64
机器下,long double
将被解释成 long double
最多能精确表示的有效位数为
因为 long long
范围内,所以如果计算结果
代码实现如下:
long long binmul(long long a, long long b, long long m) {
unsigned long long c =
(unsigned long long)a * b -
(unsigned long long)((long double)a / m * b + 0.5L) * m;
if (c < m) return c;
return c + m;
}
高精度快速幂
前置技能
请先学习 高精度
例题【NOIP2003 普及组改编·麦森数】(原题在此)
题目大意:从文件中输入
代码实现如下:
#include <cstring>
#include <iostream>
using namespace std;
int a[505], b[505], t[505], i, j;
void mult(int x[], int y[]) // 高精度乘法
{
memset(t, 0, sizeof(t));
for (i = 1; i <= x[0]; i++) {
for (j = 1; j <= y[0]; j++) {
if (i + j - 1 > 100) continue;
t[i + j - 1] += x[i] * y[j];
t[i + j] += t[i + j - 1] / 10;
t[i + j - 1] %= 10;
t[0] = i + j;
}
}
memcpy(b, t, sizeof(b));
}
void ksm(int p) // 快速幂
{
if (p == 1) {
memcpy(b, a, sizeof(b));
return;
}
ksm(p / 2); //(2^(p/2))^2=2^p
mult(b, b); // 对b平方
if (p % 2 == 1) mult(b, a);
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int p;
cin >> p;
a[0] = 1; // 记录a数组的位数
a[1] = 2; // 对2进行平方
b[0] = 1; // 记录b数组的位数
b[1] = 1; // 答案数组
ksm(p);
for (i = 100; i >= 1; i--) {
if (i == 1) {
cout << b[i] - 1 << '\n'; // 最后一位减1
} else
cout << b[i];
}
}
同一底数与同一模数的预处理快速幂
在同一底数与同一模数的条件下,可以利用分块思想,用一定的时间(一般是
过程
- 选定一个数
,预处理出 到 与 到 的值并存在一个(或两个)数组里; - 对于每一次询问
,将 拆分成 ,则 ,可以 求出答案。
关于这个数
参考代码
int pow1[65536], pow2[65536];
void preproc(int a, int mod) {
pow1[0] = pow2[0] = 1;
for (int i = 1; i < 65536; i++) pow1[i] = 1LL * pow1[i - 1] * a % mod;
int pow65536 = 1LL * pow1[65535] * a % mod;
for (int i = 1; i < 65536; i++) pow2[i] = 1LL * pow2[i - 1] * pow65536 % mod;
}
int query(int pows) { return 1LL * pow1[pows & 65535] * pow2[pows >> 16]; }
习题
- UVa 1230 - MODEX
- UVa 374 - Big Mod
- UVa 11029 - Leading and Trailing
- Codeforces - Parking Lot
- SPOJ - The last digit
- SPOJ - Locker
- LA - 3722 Jewel-eating Monsters
- SPOJ - Just add it
本页面部分内容译自博文 Бинарное возведение в степень 与其英文翻译版 Binary Exponentiation。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。
参考资料与注释
创建日期: 2018年7月11日