k 短路
问题描述
给定一个有
A * 算法
A * 算法定义了一个对当前状态
在求解
由于设计的距离函数和估价函数,对于每个状态需要记录两个值,为当前到达的结点
开始我们将初始状态
优化:由于只需要求出从初始结点到目标结点的第
当图的形态是一个
实现
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
constexpr int MAXN = 5010;
constexpr int MAXM = 400010;
constexpr int inf = 2e9;
int n, m, s, t, k, u, v, ww, H[MAXN], cnt[MAXN];
int cur, h[MAXN], nxt[MAXM], p[MAXM], w[MAXM];
int cur1, h1[MAXN], nxt1[MAXM], p1[MAXM], w1[MAXM];
bool tf[MAXN];
void add_edge(int x, int y, double z) {
cur++;
nxt[cur] = h[x];
h[x] = cur;
p[cur] = y;
w[cur] = z;
}
void add_edge1(int x, int y, double z) {
cur1++;
nxt1[cur1] = h1[x];
h1[x] = cur1;
p1[cur1] = y;
w1[cur1] = z;
}
struct node {
int x, v;
bool operator<(node a) const { return v + H[x] > a.v + H[a.x]; }
};
priority_queue<node> q;
struct node2 {
int x, v;
bool operator<(node2 a) const { return v > a.v; }
} x;
priority_queue<node2> Q;
int main() {
scanf("%d%d%d%d%d", &n, &m, &s, &t, &k);
while (m--) {
scanf("%d%d%d", &u, &v, &ww);
add_edge(u, v, ww);
add_edge1(v, u, ww);
}
for (int i = 1; i <= n; i++) H[i] = inf;
Q.push({t, 0});
while (!Q.empty()) {
x = Q.top();
Q.pop();
if (tf[x.x]) continue;
tf[x.x] = true;
H[x.x] = x.v;
for (int j = h1[x.x]; j; j = nxt1[j]) Q.push({p1[j], x.v + w1[j]});
}
q.push({s, 0});
while (!q.empty()) {
node x = q.top();
q.pop();
cnt[x.x]++;
if (x.x == t && cnt[x.x] == k) {
printf("%d\n", x.v);
return 0;
}
if (cnt[x.x] > k) continue;
for (int j = h[x.x]; j; j = nxt[j]) q.push({p[j], x.v + w[j]});
}
printf("-1\n");
return 0;
}
可持久化可并堆优化 k 短路算法
最短路树与任意路径
定义
在反向图上从
所谓最短路径树,就是满足从树上的每个结点
性质
设一条从
-
对于一条不在
上的边 ,其为从 到 的一条边,边权为 ,定义其代价 ,即为选择该边后路径长度的增加量。则路径 的长度 。 -
将
和 中的所有边按照从 到 所经过的顺序依次排列,则对于 中相邻的两条边 ,有 与 相等或为其在 上的祖先。因为在 中 直接相连或中间都为树边。 -
对于一个确定存在的
,有且仅有一个 ,使得 。因为由于性质 , 中相邻的两条边的起点和终点之间在 上只有一条路径。
问题转化
性质
性质
性质
那么问题转化为:求
过程
由于性质
我们用一个小根堆来维护这样的边集
初始我们将起点为
每次取出堆顶的一个边集
-
替换
中的最后一条边为满足相同条件的 更大的边。 -
在最后一条边后接上一条边,设
为 中最后一条边的终点,由性质 可得这条边需要满足其起点为 或 在 上的祖先。
将生成的新边集也加入小根堆。重复以上操作
对于每个结点
-
替换
中的最后一条边为 在堆上的左右儿子对应的边。 -
在最后一条边后接上一条新的边,设
为 中最后一条边的终点,则接上编号为 的小根堆的堆顶结点对应的边。
用这种方法,每次生成新的边集只会扩展出最多三个结点,小根堆中的结点总数是
所以此算法的瓶颈在合并一个结点与其在
可持久化可并堆优化
在阅读本内容前,请先了解 可持久化可并堆 的相关知识。
使用可持久化可并堆优化合并一个结点与其在
每次将一个结点与其在
注意的是,如上文所言,最终询问时不需要可并堆的合并操作。
询问时使用优先队列维护可并堆的根,对于可并堆堆顶的删除,直接将其左右儿子加入优先队列中,
就只需要
实现
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
constexpr int MAXN = 200010;
int n, m, s, t, k, x, y, ww, cnt, fa[MAXN];
struct Edge {
int cur, h[MAXN], nxt[MAXN], p[MAXN], w[MAXN];
void add_edge(int x, int y, int z) {
cur++;
nxt[cur] = h[x];
h[x] = cur;
p[cur] = y;
w[cur] = z;
}
} e1, e2;
int dist[MAXN];
bool tf[MAXN], vis[MAXN], ontree[MAXN];
struct node {
int x, v;
node* operator=(node a) {
x = a.x;
v = a.v;
return this;
}
bool operator<(node a) const { return v > a.v; }
} a;
priority_queue<node> Q;
void dfs(int x) {
vis[x] = true;
for (int j = e2.h[x]; j; j = e2.nxt[j])
if (!vis[e2.p[j]])
if (dist[e2.p[j]] == dist[x] + e2.w[j])
fa[e2.p[j]] = x, ontree[j] = true, dfs(e2.p[j]);
}
struct LeftistTree {
int cnt, rt[MAXN], lc[MAXN * 20], rc[MAXN * 20], dist[MAXN * 20];
node v[MAXN * 20];
LeftistTree() { dist[0] = -1; }
int newnode(node w) {
cnt++;
v[cnt] = w;
return cnt;
}
int merge(int x, int y) {
if (!x || !y) return x + y;
if (v[x] > v[y]) swap(x, y);
int p = ++cnt;
lc[p] = lc[x];
v[p] = v[x];
rc[p] = merge(rc[x], y);
if (dist[lc[p]] < dist[rc[p]]) swap(lc[p], rc[p]);
dist[p] = dist[rc[p]] + 1;
return p;
}
} st;
void dfs2(int x) {
vis[x] = true;
if (fa[x]) st.rt[x] = st.merge(st.rt[x], st.rt[fa[x]]);
for (int j = e2.h[x]; j; j = e2.nxt[j])
if (fa[e2.p[j]] == x && !vis[e2.p[j]]) dfs2(e2.p[j]);
}
int main() {
scanf("%d%d%d%d%d", &n, &m, &s, &t, &k);
for (int i = 1; i <= m; i++)
scanf("%d%d%d", &x, &y, &ww), e1.add_edge(x, y, ww), e2.add_edge(y, x, ww);
Q.push({t, 0});
while (!Q.empty()) {
a = Q.top();
Q.pop();
if (tf[a.x]) continue;
tf[a.x] = true;
dist[a.x] = a.v;
for (int j = e2.h[a.x]; j; j = e2.nxt[j]) Q.push({e2.p[j], a.v + e2.w[j]});
}
if (k == 1) {
if (tf[s])
printf("%d\n", dist[s]);
else
printf("-1\n");
return 0;
}
dfs(t);
for (int i = 1; i <= n; i++)
if (tf[i])
for (int j = e1.h[i]; j; j = e1.nxt[j])
if (!ontree[j])
if (tf[e1.p[j]])
st.rt[i] = st.merge(
st.rt[i],
st.newnode({e1.p[j], dist[e1.p[j]] + e1.w[j] - dist[i]}));
for (int i = 1; i <= n; i++) vis[i] = false;
dfs2(t);
if (st.rt[s]) Q.push({st.rt[s], dist[s] + st.v[st.rt[s]].v});
while (!Q.empty()) {
a = Q.top();
Q.pop();
cnt++;
if (cnt == k - 1) {
printf("%d\n", a.v);
return 0;
}
if (st.lc[a.x]) // 可并堆删除直接把左右儿子加入优先队列中
Q.push({st.lc[a.x], a.v - st.v[a.x].v + st.v[st.lc[a.x]].v});
if (st.rc[a.x])
Q.push({st.rc[a.x], a.v - st.v[a.x].v + st.v[st.rc[a.x]].v});
x = st.rt[st.v[a.x].x];
if (x) Q.push({x, a.v + st.v[x].v});
}
printf("-1\n");
return 0;
}
习题
创建日期: 2018年7月11日