跳转至

差分约束

定义

差分约束系统 是一种特殊的 元一次不等式组,它包含 个变量 以及 个约束条件,每个约束条件是由两个其中的变量做差构成的,形如 ,其中 并且 是常数(可以是非负数,也可以是负数)。我们要解决的问题是:求一组解 ,使得所有的约束条件得到满足,否则判断出无解。

差分约束系统中的每个约束条件 都可以变形成 ,这与单源最短路中的三角形不等式 非常相似。因此,我们可以把每个变量 看做图中的一个结点,对于每个约束条件 ,从结点 向结点 连一条长度为 的有向边。

注意到,如果 是该差分约束系统的一组解,那么对于任意的常数 显然也是该差分约束系统的一组解,因为这样做差后 刚好被消掉。

过程

并向每一个点连一条权重为 边,跑单源最短路,若图中存在负环,则给定的差分约束系统无解,否则, 为该差分约束系统的一组解。

性质

一般使用 Bellman–Ford 或队列优化的 Bellman–Ford(俗称 SPFA,在某些随机图跑得很快)判断图中是否存在负环,最坏时间复杂度为

常用变形技巧

例题 luogu P1993 小 K 的农场

题目大意:求解差分约束系统,有 条约束条件,每条都为形如 的形式,判断该差分约束系统有没有解。

题意 转化 连边
add(a, b, -c);
add(b, a, c);
add(b, a, 0), add(a, b, 0);

跑判断负环,如果不存在负环,输出 Yes,否则输出 No

参考代码
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;

struct edge {
  int v, w, next;
} e[40005];

int head[10005], vis[10005], tot[10005], cnt;
long long ans, dist[10005];
queue<int> q;

void addedge(int u, int v, int w) {  // 加边
  e[++cnt].v = v;
  e[cnt].w = w;
  e[cnt].next = head[u];
  head[u] = cnt;
}

int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  int n, m;
  cin >> n >> m;
  for (int i = 1; i <= m; i++) {
    int op, x, y, z;
    cin >> op;
    if (op == 1) {
      cin >> x >> y >> z;
      addedge(y, x, z);
    } else if (op == 2) {
      cin >> x >> y >> z;
      addedge(x, y, -z);
    } else {
      cin >> x >> y;
      addedge(x, y, 0);
      addedge(y, x, 0);
    }
  }
  for (int i = 1; i <= n; i++) addedge(0, i, 0);
  memset(dist, -0x3f, sizeof(dist));
  dist[0] = 0;
  vis[0] = 1;
  q.push(0);
  while (!q.empty()) {  // 判负环,看上面的
    int cur = q.front();
    q.pop();
    vis[cur] = 0;
    for (int i = head[cur]; i; i = e[i].next)
      if (dist[cur] + e[i].w > dist[e[i].v]) {
        dist[e[i].v] = dist[cur] + e[i].w;
        if (!vis[e[i].v]) {
          vis[e[i].v] = 1;
          q.push(e[i].v);
          tot[e[i].v]++;
          if (tot[e[i].v] >= n) {
            cout << "No\n";
            return 0;
          }
        }
      }
  }
  cout << "Yes\n";
  return 0;
}

例题 P4926[1007] 倍杀测量者

不考虑二分等其他的东西,这里只论述差分系统 的求解方法。

对每个 取一个 就可以把乘法变成加法运算,即 ,这样就可以用差分约束解决了。

Bellman–Ford 判负环代码实现

下面是用 Bellman–Ford 算法判断图中是否存在负环的代码实现,请在调用前先保证图是连通的。

实现
bool Bellman_Ford() {
  for (int i = 0; i < n; i++) {
    bool jud = false;
    for (int j = 1; j <= n; j++)
      for (int k = h[j]; ~k; k = nxt[k])
        if (dist[j] > dist[p[k]] + w[k])
          dist[j] = dist[p[k]] + w[k], jud = true;
    if (!jud) break;
  }
  for (int i = 1; i <= n; i++)
    for (int j = h[i]; ~j; j = nxt[j])
      if (dist[i] > dist[p[j]] + w[j]) return false;
  return true;
}
def Bellman_Ford():
    for i in range(0, n):
        jud = False
        for j in range(1, n + 1):
            while ~k:
                k = h[j]
                if dist[j] > dist[p[k]] + w[k]:
                    dist[j] = dist[p[k]] + w[k]
                    jud = True
                k = nxt[k]
        if jud == False:
            break
    for i in range(1, n + 1):
        while ~j:
            j = h[i]
            if dist[i] > dist[p[j]] + w[j]:
                return False
            j = nxt[j]
    return True

习题

Usaco2006 Dec Wormholes 虫洞

「SCOI2011」糖果

POJ 1364 King

POJ 2983 Is the Information Reliable?


最后更新: 2024年5月8日
创建日期: 2018年7月11日
回到页面顶部