线段树套线段树
常见用途
在算法竞赛中,我们有时需要维护多维度信息。在这种时候,我们经常需要树套树来记录信息。
实现原理
我们考虑用树套树如何实现在二维平面上进行单点修改,区域查询。我们考虑外层的线段树,最底层的
性质
空间复杂度
通常情况下,我们不可能对于外层线段树的每一个结点都建立一颗子线段树,空间需求过大。树套树一般采取动态开点的策略。单次修改,我们会涉及到外层线段树的
时间复杂度
对于询问操作,我们考虑我们在外层线段树上进行
经典例题
陌上花开 将第一维排序处理,然后用树套树维护第二维和第三维。
示例代码
第二维查询
int tree_query(int k, int l, int r, int x) {
if (k == 0) return 0;
if (1 <= l && r <= sec[x].y) return vec_query(ou_root[k], 1, p, 1, sec[x].z);
int mid = l + r >> 1, res = 0;
if (1 <= mid) res += tree_query(ou_ch[k][0], l, mid, x);
if (sec[x].y > mid) res += tree_query(ou_ch[k][1], mid + 1, r, x);
return res;
}
第二维修改
void tree_insert(int &k, int l, int r, int x) {
if (k == 0) k = ++ou_tot;
vec_insert(ou_root[k], 1, p, sec[x].z);
if (l == r) return;
int mid = l + r >> 1;
if (sec[x].y <= mid)
tree_insert(ou_ch[k][0], l, mid, x);
else
tree_insert(ou_ch[k][1], mid + 1, r, x);
}
第三维查询
int vec_query(int k, int l, int r, int x, int y) {
if (k == 0) return 0;
if (x <= l && r <= y) return data[k];
int mid = l + r >> 1, res = 0;
if (x <= mid) res += vec_query(ch[k][0], l, mid, x, y);
if (y > mid) res += vec_query(ch[k][1], mid + 1, r, x, y);
return res;
}
第三维修改
void vec_insert(int &k, int l, int r, int loc) {
if (k == 0) k = ++tot;
data[k]++;
if (l == r) return;
int mid = l + r >> 1;
if (loc <= mid) vec_insert(ch[k][0], l, mid, loc);
if (loc > mid) vec_insert(ch[k][1], mid + 1, r, loc);
}
相关算法
面对多维度信息的题目时,如果题目没有要求强制在线,我们还可以考虑 CDQ 分治,或者 整体二分 等分治算法,来避免使用高级数据结构,减少代码实现难度。
最后更新: 2022年9月26日
创建日期: 2018年7月11日
创建日期: 2018年7月11日