跳转至

李超线段树

引入

洛谷 4097 [HEOI2013]Segment

要求在平面直角坐标系下维护两个操作(强制在线):

  1. 在平面上加入一条线段。记第 条被插入的线段的标号为 ,该线段的两个端点分别为
  2. 给定一个数 ,询问与直线 相交的线段中,交点纵坐标最大的线段的编号(若有多条线段与查询直线的交点纵坐标都是最大的,则输出编号最小的线段)。特别地,若不存在线段与给定直线相交,输出

数据满足:操作总数

我们发现,传统的线段树无法很好地维护这样的信息。这种情况下,李超线段树 便应运而生。

过程

我们可以把任务转化为维护如下操作:

  • 加入一个一次函数,定义域为
  • 给定 ,求定义域包含 的所有一次函数中,在 处取值最大的那个,如果有多个函数取值相同,选编号最小的。
注意

当线段垂直于 轴时,会出现除以零的情况。假设线段两端点分别为 ,则插入定义域为 的一次函数

看到区间修改,我们按照线段树解决区间问题的常见方法,给每个节点一个懒标记。每个节点 的懒标记都是一条线段,记为 ,表示要用 更新该节点所表示的整个区间。

现在我们需要插入一条线段 ,考虑某个被新线段 完整覆盖的线段树区间。若该区间无标记,直接打上用该线段更新的标记。

如果该区间已经有标记了,由于标记难以合并,只能把标记下传。但是子节点也有自己的标记,也可能产生冲突,所以我们要递归下传标记。

如图,按新线段 取值是否大于原标记 ,我们可以把当前区间分为两个子区间。其中 肯定有一个子区间被左区间或右区间完全包含,也就是说,在两条线段中,肯定有一条线段,只可能成为左区间的答案,或者只可能成为右区间的答案。我们用这条线段递归更新对应子树,用另一条线段作为懒标记更新整个区间,这就保证了递归下传的复杂度。当一条线段只可能成为左或右区间的答案时,才会被下传,所以不用担心漏掉某些线段。

具体来说,设当前区间的中点为 ,我们拿新线段 在中点处的值与原最优线段 在中点处的值作比较。

如果新线段 更优,则将 交换。那么现在考虑在中点处 不如 优的情况:

  1. 若在左端点处 更优,那么 必然在左半区间中产生了交点, 只有在左区间才可能优于 ,递归到左儿子中进行下传;
  2. 若在右端点处 更优,那么 必然在右半区间中产生了交点, 只有在右区间才可能优于 ,递归到右儿子中进行下传;
  3. 若在左右端点处 都更优,那么 不可能成为答案,不需要继续下传。

除了这两种情况之外,还有一种情况是 刚好交于中点,在程序实现时可以归入中点处 不如 优的情况,结果会往 更优的一个端点进行递归下传。

最后将 作为当前区间的懒标记。

下传标记:

实现
constexpr double eps = 1e-9;

int cmp(double x, double y) {  // 因为用到了浮点数,所以会有精度误差
  if (x - y > eps) return 1;
  if (y - x > eps) return -1;
  return 0;
}

//...

void upd(int root, int cl, int cr, int u) {  // 对线段完全覆盖到的区间进行修改
  int &v = s[root], mid = (cl + cr) >> 1;
  int bmid = cmp(calc(u, mid), calc(v, mid));
  if (bmid == 1 || (!bmid && u < v))  // 在此题中记得判线段编号
    swap(u, v);
  int bl = cmp(calc(u, cl), calc(v, cl)), br = cmp(calc(u, cr), calc(v, cr));
  if (bl == 1 || (!bl && u < v)) upd(root << 1, cl, mid, u);
  if (br == 1 || (!br && u < v)) upd(root << 1 | 1, mid + 1, cr, u);
  // 上面两个 if 的条件最多只有一个成立,这保证了李超树的时间复杂度
}

拆分线段:

实现
void update(int root, int cl, int cr, int l, int r,
            int u) {  // 定位插入线段完全覆盖到的区间
  if (l <= cl && cr <= r) {
    upd(root, cl, cr, u);  // 完全覆盖当前区间,更新当前区间的标记
    return;
  }
  int mid = (cl + cr) >> 1;
  if (l <= mid) update(root << 1, cl, mid, l, r, u);  // 递归拆分区间
  if (mid < r) update(root << 1 | 1, mid + 1, cr, l, r, u);
}

注意懒标记并不等价于在区间中点处取值最大的线段。

如图,加入黄色线段后,只有红色节点的标记被更新,而绿色节点的标记还未被改变。但在第二、三、四个绿色区间的中点处显然黄色线段取值最大。

查询时,我们可以利用标记永久化思想,在包含 的所有线段树区间(不超过 个)的标记线段中,比较得出最终答案。

查询:

实现
pdi query(int root, int l, int r, int d) {  // 查询
  if (r < d || d < l) return {0, 0};
  int mid = (l + r) >> 1;
  double res = calc(s[root], d);
  if (l == r) return {res, s[root]};
  return pmax({res, s[root]}, pmax(query(root << 1, l, mid, d),
                                   query(root << 1 | 1, mid + 1, r, d)));
}

根据上面的描述,查询过程的时间复杂度显然为 ,而插入过程中,我们需要将原线段拆分到 个区间中,对于每个区间,我们又需要花费 的时间递归下传,从而插入过程的时间复杂度为

[HEOI2013]Segment 参考代码
#include <iostream>
constexpr int MOD1 = 39989;
constexpr int MOD2 = 1000000000;
constexpr int MAXT = 40000;
using namespace std;
using pdi = pair<double, int>;

constexpr double eps = 1e-9;

int cmp(double x, double y) {
  if (x - y > eps) return 1;
  if (y - x > eps) return -1;
  return 0;
}

struct line {
  double k, b;
} p[100005];

int s[160005];
int cnt;

double calc(int id, int d) { return p[id].b + p[id].k * d; }

void add(int x0, int y0, int x1, int y1) {
  cnt++;
  if (x0 == x1)  // 特判直线斜率不存在的情况
    p[cnt].k = 0, p[cnt].b = max(y0, y1);
  else
    p[cnt].k = 1.0 * (y1 - y0) / (x1 - x0), p[cnt].b = y0 - p[cnt].k * x0;
}

void upd(int root, int cl, int cr, int u) {  // 对线段完全覆盖到的区间进行修改
  int &v = s[root], mid = (cl + cr) >> 1;
  int bmid = cmp(calc(u, mid), calc(v, mid));
  if (bmid == 1 || (!bmid && u < v)) swap(u, v);
  int bl = cmp(calc(u, cl), calc(v, cl)), br = cmp(calc(u, cr), calc(v, cr));
  if (bl == 1 || (!bl && u < v)) upd(root << 1, cl, mid, u);
  if (br == 1 || (!br && u < v)) upd(root << 1 | 1, mid + 1, cr, u);
}

void update(int root, int cl, int cr, int l, int r,
            int u) {  // 定位插入线段完全覆盖到的区间
  if (l <= cl && cr <= r) {
    upd(root, cl, cr, u);
    return;
  }
  int mid = (cl + cr) >> 1;
  if (l <= mid) update(root << 1, cl, mid, l, r, u);
  if (mid < r) update(root << 1 | 1, mid + 1, cr, l, r, u);
}

pdi pmax(pdi x, pdi y) {  // pair max函数
  if (cmp(x.first, y.first) == -1)
    return y;
  else if (cmp(x.first, y.first) == 1)
    return x;
  else
    return x.second < y.second ? x : y;
}

pdi query(int root, int l, int r, int d) {  // 查询
  if (r < d || d < l) return {0, 0};
  int mid = (l + r) >> 1;
  double res = calc(s[root], d);
  if (l == r) return {res, s[root]};
  return pmax({res, s[root]}, pmax(query(root << 1, l, mid, d),
                                   query(root << 1 | 1, mid + 1, r, d)));
}

int main() {
  ios::sync_with_stdio(false);
  int n, lastans = 0;
  cin >> n;
  while (n--) {
    int op;
    cin >> op;
    if (op == 1) {
      int x0, y0, x1, y1;
      cin >> x0 >> y0 >> x1 >> y1;
      x0 = (x0 + lastans - 1 + MOD1) % MOD1 + 1,
      x1 = (x1 + lastans - 1 + MOD1) % MOD1 + 1;
      y0 = (y0 + lastans - 1 + MOD2) % MOD2 + 1,
      y1 = (y1 + lastans - 1 + MOD2) % MOD2 + 1;
      if (x0 > x1) swap(x0, x1), swap(y0, y1);
      add(x0, y0, x1, y1);
      update(1, 1, MOD1, x0, x1, cnt);
    } else {
      int x;
      cin >> x;
      x = (x + lastans - 1 + MOD1) % MOD1 + 1;
      cout << (lastans = query(1, 1, MOD1, x).second) << endl;
    }
  }
  return 0;
}

合并

类似于普通线段树的合并,我们定义以下过程来将两个李超线段树节点 合并,并以 作为新的根。

  1. 如果 为空,结束过程。

  2. 如果 为空,将 复制给

  3. 对应线段插入到 为根的子树。

  4. 递归将 的左右子树对应合并。

若合并若干李超线段树涉及的总点数为 ,则该过程的复杂度为 :对于任意线段在树上对应的节点,每次涉及移动它时,我们要么使其深度 ,要么直接从树上删除,这两个操作的代价都是 的,而每个点深度至多为 ,于是复杂度如上。

实现
void upd(int &root, int cl, int cr,
         int u) {  // 涉及多棵李超线段树合并,使用动态开点。
  static int idx = 0;
  if (!root) {
    s[root = ++idx] = u;
    return;
  }
  int &v = s[root], mid = (cl + cr) >> 1;
  int bmid = cmp(calc(u, mid), calc(v, mid));
  if (bmid == 1 || (!bmid && u < v)) swap(u, v);
  int bl = cmp(calc(u, cl), calc(v, cl)), br = cmp(calc(u, cr), calc(v, cr));
  if (bl == 1 || (!bl && u < v)) upd(ls[root], cl, mid, u);
  if (br == 1 || (!br && u < v)) upd(rs[root], mid + 1, cr, u);
}

int merge(int &u, int &v, int l, int r) {
  if (!u || !v) {
    return u + v;
  }
  if (l == r) {
    int b = cmp(calc(s[v], l), calc(s[u], l));
    if (b == 1 || (!b && s[v] < s[u])) return v;
    return u;
  }
  upd(u, l, r, s[v]);
  int mid = (l + r) >> 1;
  ls[u] = merge(ls[u], ls[v], l, mid);
  rs[u] = merge(rs[u], rs[v], mid + 1, r);
  return u;
}

习题

「JSOI2008」Blue Mary 开公司

「CodeChef」TSUM2 Sum on Tree

「USACO13MAR」Hill Walk G

「CF932F」Escape Through Leaf


最后更新: 2024年10月12日
创建日期: 2020年7月27日
回到页面顶部