
Black and White

The challenge in this problem is writing clear concise code that checks the conditions specified. One trick that can be
used is to write code that does the row checks, transpose the input, and rerun that identical code.

Carry Cam Failure

Clearly, with 25-digit input, it’s impractical to simply try all possible numbers. But since only the least significant digit
of the input affects the least significant digit of the output, and the least significant two digits affect the least significant
two digits, etc., we can generate possibilities recursively, digit by digit, checking as many digits as we have. This
might look like it can blow up exponentially but a little bit of testing will show that it easily runs in time.

A slightly more efficient solution is possible if you note that carryless squaring of a reversed number is just the reversed
result of carryless squaring of that number. This means that you can perform your recursion from the most significant
digit to the least significant digit, simplifying the check for minimal correct result.

Checkerboard

The simplest solution to this problem is just four nested loops. The outermost loops over the A values, the counts up
to individual ais, the next loops over B values, and the next loops over individual bis. The color of the output depends
on the parity of the A index and B index, or, you can just keep track of the leftmost color of each row.

Coloring Contention

This problem looks challenging on first glance. We want to force Bob to make at least k − 1 color changes if the
path length is at least k; this is the best we can do. And indeed, we can do exactly that, by coloring the edges by their
distance from node 1. Initially we set all edges to uncolored. Edges adjacent to node 1 all get red. Then, edges adjacent
to those edges that remain uncolored get blue. And so on, alternating colors, until all edges are colored. Essentially,
the color of an edge is the parity of the distance from the source node. Edges that connect nodes at the same distance
from the source node can get any color.

It is not necessary to actually color the graph; all you need do is calculate the distance between the two graph nodes
and return that value less 1. Since the number of nodes is at least 2, you don’t even need to worry about the case of a
path length of 0.

Computer Cache

We’ll start by ignoring the increment operation for now.

We’ll build a segment tree with lazy propagation on the cache positions. In terms of the lazy propagation, any given
node will be in either one of two states: either it will be completely empty, or we will save information of the form
(data segment index, left endpoint of segment, right endpoint of segment). When we lazily propagate this information
down towards the leaves, we can compute the boundaries for the new left and right endpoints. When we need to run a
query, the left and right endpoint of the segment will match and we can reference the byte to print directly.

In order to handle the increment operation, we can build persistent segment trees with lazy propagation on the data
segments themselves. When we now load data segments, instead of just tracking the data segment index, we also need
to track how many increments had been applied to the segment at the time of the data load so we know which version



of the persistent segment tree to query for the correct data values. Since we only query for one byte at a time, if we
maintain at each internal node how much each value in the given segment has been incremented by, we can walk the
segment tree from root to leaf and sum all the increments, and add to that the original value to get our answer.

Alternatively, Fenwick or binary indexed trees can be used to solve the problem. To keep track of which data items
and offsets are associated with each byte, one Fenwick tree can track the index of the command that set that particular
range (in this case, the Fenwick tree accumulation function is max). In addition we have a Fenwick tree for each data
item that tracks the increments in that data item (in this case, the Fenwick tree accumulation function is addition). You
can relocate each query operation to right after last load operation for the query location, and reorder the results later
to match the order the actual queries were performed in.

Dividing by Two

Since the only way to increase A is to add 1, if B is greater than A, you simply perform B − A increments and you
are done.

If B is less than A, however, you need to divide by two, and to do this you may need to add one first to make it even.
So decreasing a number is performed by some number of increments interspersed with some number of divide by
twos. How can we tell what is the optimal solution?

The key is the sequence +,+, /, or two increments followed by a divide by two. This is equivalent to /,+, which
is shorter. So any time we have two increments followed by a divide, we can replace those three with the two-move
shorter sequence.

So it’s always optimal to do divides first, only using increments as needed to permit the divide to occur, until we get
A to be less than or equal to B, after which we add as many increments as needed.

Error Correction

At first glance this is precisely maximum independent set on a graph; that is, find a maximum set of vertices in a graph
that are not connected. Another way to look at it is to find the maximum clique on the complement of the graph, but
the graph is sparse so it’s probably best to work on the original graph. This is a well-known NP-hard problem, and
the bounds clearly do not permit an exponential solution, so you should look for structure in the graph that can be
exploited.

The structure we exploit in this case is permutation parity; the words are all anagrams, and thus are permutations of
each other, and each permutation has a parity. Alternatively, you can look at it as the number of inversions on letters in
each word, which also has a well-known parity property. This means that the graph is a bipartite graph, and maximum
independent set can be calculated with any matching algorithm; the sum of the maximum matching and maximum
independent set on a bipartite graph is just the number of vertices.

Any matching algorithm (Dinitz, Hungarian, or any network flow algorithm) can be used.

Even or Odd

The bounds on this problem are sufficiently small that just trying all possible starting numbers for a given N easily
runs in time. But a little thought works too; for a given N , the only thing that matters is if the starting position is even
or odd. Further simplification can be had by realizing that any group of four consecutive integers always sums to an
even number, so you only need consider N mod 4. If Nmod4 is 0, the answer is always even. If Nmod4 is 2, the
answer is always odd. If Nmod4 is 1 or 3, the answer is, it could be either.

Carny Magician



To solve this problem, we break it down into a number of easier problems, and build up solutions from there.

In order to construct the nth permutation that satisfies the requirements, we need to be able to count the number of
ways to fill out a solution, given a particular prefix. We will use the case n = 9, m = 4, and k = 3000 as an example.
We will write permutations as a simple digit string.

So for instance, in this case, we start on the left, and we try the prefix 1. This gives us a single fixed point, so the
remaining 8 permutation elements must give us 3 more fixed points; this is equivalent to the original problem with
n = 8 and m = 3. For these values there are only 2464 different permutations that work, so k = 3000 is too much, so
we know the first digit is not 1. And, we can subtract the 2464 from the 3000 as we skip all the permutations that start
with 1.

Next we consider the prefix 2, with k = 536. This is not equivalent to the original problem, as we are using a value
that matches a slot number in the suffix. Thus, we actually need to solve a somewhat more general problem; we need
to include the count of how many values are in the remaining set that could match one of the remaining slots. In this
case, we still have the value 1 to assign, but slot 1 is used, so we have to solve the problem n = 8, m = 3, and x = 7
where the x indicates that we have only seven values that can match a slot, and the remaining one value cannot. So
we define g(n,m, x) as the number of permutations of n items with m fixed points where only x values can possibly
match the slots numbers.

First, let’s consider the different ways we can match up values. We want to match m of x values, so that’s clearly
(
x
m

)
,

so

g(n,m, x) =

(
x

m

)
g(n−m, 0, x−m)

From here on out we will always have m = 0. If x = 0, then there cannot be any fixed points, so g(n, 0, 0) = n!.
Also, g(0, 0, 0) = 1.

Let’s assume x > 0 and choose a location for one of the values x that might still match a slot. Either we can choose
a location that still has a matching value but is not x (there are x − 1 of these), or we can choose a location that does
not have a matching value (there are n−x of these). In the first case, we use x but we also use up one of the matching
slots, so x decreases by two; in the second case, x just decreases by one. So we end up with the recurrence

g(n, 0, x) = (x− 1)g(n− 1, 0, x− 2) + (n− x)g(n− 1, 0, x− 1)

From here the challenge is dealing with big numbers and overflow. If you use Python, you have no problems. Java
BigInteger will work fine (but BigInteger is awkward to use). If you use C++, you probably need to write addition and
multiplication routines that saturate at some value larger than 1018.

Issuing Plates

The solution here is to create a list of the bad words. Then, when we read in a plate to check, we first substitute any
digits for the letters they are similar to, according to the table. Next, we iterate over the bad words and simply see if
the plate has one of the bad words as a substring, using the built-in library method for this purpose.

The most likely cause of a failure in this problem is not copying the table of digit to letter transformations carefully
enough.

Glow, Little Pixel, Glow

There were two things you had to figure out to solve this problem. The first, was to determine when a horizontal and
vertical pulse would actually intersect. The second was to figure out a way to sum the number of collisions without
enumerating them.

For the first, just project one horizontal and one vertical pulse train onto the line x = y. The projection on that line
has the pulse trains moving at exactly the same speeds, so if they overlap at any time they will always overlap; if they
don’t overlap, they never will.



For the second, build a list of events that occur, projected to the line x = y, of four types: a horizontal pulse start, a
horizontal pulse end, a vertical pulse start, and a vertical pulse end. Sort them by their position on the x = y line, and
then scan from the first event to the last.

Every time we encounter a horizontal pulse start, we increment a counter of the currently active horizontal pulses;
every time we encounter horizontal pulse end, we decrement that counter. Similarly for all the vertical pulses. In
addition, for every horizontal pulse start, we know that pulse collides with all of the current vertical pulses, so we add
the count of the current active horizontal pulses to our return value. For every vertical pulse start, we add the count of
the current active vertical pulses to the return value.

Interstellar Travel

The first observation is that since the energy function is (piecewise) linear in the angle, the derivative is constant. This
implies the best angle to launch the spacecraft will be directed at a star.

There are 105 stars, thus we cannot spend linear time to calculate the energy achieved from launching the spacecraft
at a particular star. Instead, we must do a sweep, calculating the energy for all stars in one go. For each star, we
can determine at which angle the star starts contributing to the energy of the launch, and similarly when that energy
peaks and stops contributing. Again, since the derivative is constant, we can maintain the change in energy per radian
moved, making it possible to find all energies in O(n log n) total time, after sorting by radian. Care must be taken to
handle the circle properly, and stars that contribute energy no matter the angle must be special-cased.

Correcting Keats

We want to generate a list of all possible words at a Levenshtein distance of one from a given word, using letters
from a given alphabet, without duplicates, and sorted. The easiest way to do this is to use a specific container that is
sorted and unique (in C++, a set; in Java, a TreeSet). We simply iterate through the word position and make each
possible change, adding the result to the container. At the end, we iterate through the container printing any words that
are not identical to the given word.

Rather than iterating through positions, a particularly nice way to solve this problem is with recursion, keeping track
of what character in the original string we are at, building an output string, and keeping track of whether we’ve made
a needed change or not. See the file Lev2_tgr.cpp for this solution.

Maze Connect

We claim that this problem translates directly to a classic graph theory problem - given an undirected graph, compute
the minimum number of edges to add to the graph such that the graph is connected. To solve this problem, we count
the number of connected components in the graph. This can be done in a number of different ways - one way is to loop
over all vertices and for every vertex which has not yet been seen, to run DFS or BFS and mark all vertices that are
reachable from the current vertex. The answer is consequently one fewer than the number of connected components,
as adding a single edge can reduce the number of connected components by at most one.

It remains to show how to translate the given problem into one that can be solved in the above manner. Imagine
blowing up the input grid by a factor of 2 in each direction, and furthermore adding a boundary of empty cells around
the grid. Every square in the grid represents a vertex, and two squares that share a side and are both empty share an
edge. We can then run the above procedure on this graph.

Remorse



Intuitively, we want to calculate the frequency of each letter, and then use shorter codes for the most frequent letters.
This intuition turns out to be correct, and can be shown by considering any case where this is violated, and realizing
that the overall cost can be improved just by swapping the two codes.

Our first step is to calculate the frequency of each letter. This can be done with a simple array. Once we have the
counts, we don’t need the letter assignments anymore, so we can just directly sort the array.

Next, we need a list of codes, shortest first. We know we will need at most 26 codes, starting with a single dot, but
we may not be sure how many codes we need to generate or how long they are. Again, we only need a count of code
lengths, not the actual codes themselves. There are several ways to generate the codes; perhaps the easiest is to just
generate, say, all codes up to 10 dots or dashes in length, and sort them; there are only 2046 of these so it will clearly
run in time.

Another way to handle this is to just calculate how many codes of a given length there are, recursively. There is only
one code of length 1, and two codes of length 3. If f(n) is the number of codes of length n, then we can calculate
this expression recursively with f(n) = f(n− 2) + f(n− 4), with the first term giving codes starting with a dot and
the second code giving codes starting with a dash. If you expand this out manually you’ll easily see this is just the
Fibonacci sequence, and the longest codes we need are of length 11.

After that, we match the most frequent letters with the shortest code and sum the length, adding three for each letter
in the input except the first.

Perfect Flush

We sweep over the integers in the list in order and will attempt to construct the desired subsequence directly.

There are two cases to consider when considering the ith integer in the input list.

1. The given integer is already present in our subsequence. We do nothing.

2. The given integer is not present in our subsequence. This is the interesting case to consider.

While our tentative subsequence is not empty, we will compare the given integer to the last integer in our
subsequence. If the given integer is larger than the last integer in our subsequence, then append it to the end of
our subsequence. Otherwise, it is smaller than the last integer. We can safely remove this integer if and only
if there is another appearance of this integer that will be considered later in the sweep. We repeat this removal
process until we can no longer remove an integer, at which we perform the append.

Radio Prize

You are given a tree with N nodes, where every node has a tax value tu and each edge has some weight wi. The cost
of a path between nodes u and v is equal to (tu + tv)dist(u, v). For each node u, compute the sum of the costs of all
paths to all other nodes v.

The above expression can be broken up into tudist(u, v) + tvdist(u, v). Compute for some arbitrary root in O(N)
time. Then computing the answer for a neighboring node can be done in O(1) time.

Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tvdist(u, v)



Then the answer for node u is just tuau + bu.

How do we compute au′ and bu′ for some neighbor u′ of u?

Let w be the length of the edge between u and u′. For all nodes in the subtree of u′ when the tree is rooted at u, their
distance to the root decreases by w. For all other nodes, the distance increases by w. If we let size(u) be the size of
the subtree rooted at u, then

au′ = au + w(N − size(u))− wsize(u)

Similarly, if we let tax(u) be the sum of the tax values of all nodes in the subtree rooted at u, then

bu′ = bu + w(tax(root)− tax(u))− wtax(u)

Since these values can be updated in O(1), walking and updating the tree and computing all values takes O(N) time
in total.

Rainbow Strings

For each lowercase letter l, let f(l) be the number of times that letter appears in the string. We claim the answer is∏
l

(f(l) + 1) .

The combinatorial interpretation for this is as follows - for each rainbow string, either the given letter appears in the
string or it does not. If it appears in the string, there are f(l) choices for which index to select. If it does not appear in
the string, there is 1 way to make that happen. This means there are f(l) + 1 valid choices for which index to select
for the given letter. All letters are independent, so we multiply f(l) + 1 over all letters.

Speeding

For simplicity, we’ll compute the maximum speed we can be certain the car drove. To compute the greatest integral
speed, we take the floor of the answer.

Let’s first focus on the case where N = 2. In this case, we know that the average speed the car was driving at was
d2−d1

t2−t1 . The maximum speed can therefore be no larger than that, as the car can just drive at that speed without no
changes.

We will use the solution where N = 2 to solve the case where N > 2. In particular, we assert that the answer is simply

max
1≤i≤N−1

di+1 − di
ti+1 − ti

. The reason for this is that any two consecutive photos can be treated as a case where N = 2,

which provides a tight upper bound on the speed that the car could have been driving over that segment of road. We
can therefore just take the segment of road with the highest upper bound.

Pivoting Points

Like many geometry problems, we tackle this one by focusing on the discrete events that shape the continuous motion
of the windmill. In this case, the event that we care about is the promotion event, where the line hits a second point



and switches pivots. We can see that there are O(n2) distinct events, as they are fully parameterized by the point that
is currently the pivot, the point that is about to be promoted, and the orientation of the line with respect to the points
(the line is oriented because we are tracing its path through a 360 degree rotation). The problem statement provides
us with a hint that the line will always return to the same position after a 360 degree rotation. This is useful because it
means that the O(n2) events can be partitioned into disjoint cycles, and each possible windmill is simply a traversal of
one of these cycles at a different starting point. Therefore if we simulate the motion of a single windmill by traversing
its events, we can compute the promotion count for all the points during not only that windmill, but all other windmills
that share its cycle. We also observe that there are O(n) different cycles, since every windmill must at some point be
oriented straight up and must pass through at least one of the n points while doing so.

Therefore the bulk of the work will be in simulating the motion, which requires finding the next event that will occur
after the current event. Naively, we could perform the promotion of the current event and then check all of the other
points to see which point will get hit earliest as we continue rotating the line about the new pivot; this would be O(n)
work per event, for a total of O(n3) work. This is not quite fast enough for the given bounds. To help speed up this
search for the next event, for each point we maintain the order of all the other points sorted by angle; this allows us
to either step or binary search to find the next event. This requires O(n2 lg n) precomputation, followed by O(lg n)
work per event, for a total of O(n2 lg n) work.

Note that the events look a little different depending on whether the next point hits the line above the current point or
below it. Mirroring points about the pivot in the right way can make the computations cleaner.



This page is intentionally left blank.


