4.median-of-two-sorted-arrays
Statement
Metadata
- Link: 寻找两个正序数组的中位数
- Difficulty: Hard
- Tag:
数组
二分查找
分治
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n))
。
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:
输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000
示例 4:
输入:nums1 = [], nums2 = [1]
输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Metadata
- Link: Median of Two Sorted Arrays
- Difficulty: Hard
- Tag:
Array
Binary Search
Divide and Conquer
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define lowbit(x) ((x) & (-(x)))
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int findKth(const vector<int> &nums1, const vector<int> &nums2, int k) {
int n = int(nums1.size());
int m = int(nums2.size());
int l = 0, r = 0;
while (true) {
if (l >= n) {
return nums2[r + k - 1];
}
if (r >= m) {
return nums1[l + k - 1];
}
if (k == 1) {
if (nums1[l] <= nums2[r]) {
return nums1[l];
} else {
return nums2[r];
}
}
int mid = min(k / 2, min(n - l, m - r));
int num1 = nums1[l + mid - 1];
int num2 = nums2[r + mid - 1];
if (num1 <= num2) {
l = l + mid;
k -= mid;
} else {
r = r + mid;
k -= mid;
}
}
}
double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
int n = int(nums1.size());
int m = int(nums2.size());
int tot = n + m;
if (tot & 1) {
return findKth(nums1, nums2, (tot + 1) / 2);
} else {
int num1 = findKth(nums1, nums2, tot / 2);
int num2 = findKth(nums1, nums2, tot / 2 + 1);
return (num1 + num2) * 1.0 / 2;
}
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
最后更新: October 11, 2023