跳转至

1025.divisor-game

Statement

Metadata
  • Link: 除数博弈
  • Difficulty: Easy
  • Tag: 脑筋急转弯 数学 动态规划 博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 n 。在每个玩家的回合,玩家需要执行以下操作:

  • 选出任一 x,满足 0 < x < n 且 n % x == 0 。
  • n - x 替换黑板上的数字 n

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 true 。假设两个玩家都以最佳状态参与游戏。

 

示例 1:

输入:n = 2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。

示例 2:

输入:n = 3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

 

提示:

  • 1 <= n <= 1000

Metadata
  • Link: Divisor Game
  • Difficulty: Easy
  • Tag: Brainteaser Math Dynamic Programming Game Theory

Alice and Bob take turns playing a game, with Alice starting first.

Initially, there is a number n on the chalkboard. On each player's turn, that player makes a move consisting of:

  • Choosing any x with 0 < x < n and n % x == 0.
  • Replacing the number n on the chalkboard with n - x.

Also, if a player cannot make a move, they lose the game.

Return true if and only if Alice wins the game, assuming both players play optimally.

 

Example 1:

Input: n = 2
Output: true
Explanation: Alice chooses 1, and Bob has no more moves.

Example 2:

Input: n = 3
Output: false
Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.

 

Constraints:

  • 1 <= n <= 1000

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    bool divisorGame(int n) {
        auto f = vector<int>(n + 1, false);
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j < i; j++) {
                if (i % j == 0 && f[i - j] == false) {
                    f[i] = true;
                    break;
                }
            }
        }

        return f[n];
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

最后更新: October 11, 2023
回到页面顶部