biweekly-contest-92
A
Statement
Metadata
- Link: 分割圆的最少切割次数
- Difficulty: Easy
- Tag:
圆内一个 有效切割 ,符合以下二者之一:
- 该切割是两个端点在圆上的线段,且该线段经过圆心。
- 该切割是一端在圆心另一端在圆上的线段。
一些有效和无效的切割如下图所示。
给你一个整数 n
,请你返回将圆切割成相等的 n
等分的 最少 切割次数。
示例 1:
输入:n = 4
输出:2
解释:
上图展示了切割圆 2 次,得到四等分。
示例 2:
输入:n = 3
输出:3
解释:
最少需要切割 3 次,将圆切成三等分。
少于 3 次切割无法将圆切成大小相等面积相同的 3 等分。
同时可以观察到,第一次切割无法将圆切割开。
提示:
1 <= n <= 100
Metadata
- Link: Minimum Cuts to Divide a Circle
- Difficulty: Easy
- Tag:
A valid cut in a circle can be:
- A cut that is represented by a straight line that touches two points on the edge of the circle and passes through its center, or
- A cut that is represented by a straight line that touches one point on the edge of the circle and its center.
Some valid and invalid cuts are shown in the figures below.
Given the integer n
, return the minimum number of cuts needed to divide a circle into n
equal slices.
Example 1:
Input: n = 4
Output: 2
Explanation:
The above figure shows how cutting the circle twice through the middle divides it into 4 equal slices.
Example 2:
Input: n = 3
Output: 3
Explanation:
At least 3 cuts are needed to divide the circle into 3 equal slices.
It can be shown that less than 3 cuts cannot result in 3 slices of equal size and shape.
Also note that the first cut will not divide the circle into distinct parts.
Constraints:
1 <= n <= 100
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int numberOfCuts(int n) {
if (n < 3) {
return n - 1;
}
if (n & 1) {
return n;
}
return n >> 1;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 行和列中一和零的差值
- Difficulty: Medium
- Tag:
给你一个下标从 0 开始的 m x n
二进制矩阵 grid
。
我们按照如下过程,定义一个下标从 0 开始的 m x n
差值矩阵 diff
:
- 令第
i
行一的数目为onesRowi
。 - 令第
j
列一的数目为onesColj
。 - 令第
i
行零的数目为zerosRowi
。 - 令第
j
列零的数目为zerosColj
。 diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj
请你返回差值矩阵 diff
。
示例 1:
输入:grid = [[0,1,1],[1,0,1],[0,0,1]]
输出:[[0,0,4],[0,0,4],[-2,-2,2]]
解释:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0
= 2 + 1 - 1 - 2 = 0
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1
= 2 + 1 - 1 - 2 = 0
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2
= 2 + 3 - 1 - 0 = 4
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0
= 2 + 1 - 1 - 2 = 0
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1
= 2 + 1 - 1 - 2 = 0
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2
= 2 + 3 - 1 - 0 = 4
- diff[2][0] = onesRow2 + onesCol0 - zerosRow2 - zerosCol0
= 1 + 1 - 2 - 2 = -2
- diff[2][1] = onesRow2 + onesCol1 - zerosRow2 - zerosCol1
= 1 + 1 - 2 - 2 = -2
- diff[2][2] = onesRow2 + onesCol2 - zerosRow2 - zerosCol2
= 1 + 3 - 2 - 0 = 2
示例 2:
输入:grid = [[1,1,1],[1,1,1]]
输出:[[5,5,5],[5,5,5]]
解释:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
grid[i][j]
要么是0
,要么是1
。
Metadata
- Link: Difference Between Ones and Zeros in Row and Column
- Difficulty: Medium
- Tag:
You are given a 0-indexed m x n
binary matrix grid
.
A 0-indexed m x n
difference matrix diff
is created with the following procedure:
- Let the number of ones in the
ith
row beonesRowi
. - Let the number of ones in the
jth
column beonesColj
. - Let the number of zeros in the
ith
row bezerosRowi
. - Let the number of zeros in the
jth
column bezerosColj
. diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj
Return the difference matrix diff
.
Example 1:
Input: grid = [[0,1,1],[1,0,1],[0,0,1]]
Output: [[0,0,4],[0,0,4],[-2,-2,2]]
Explanation:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0
= 2 + 1 - 1 - 2 = 0
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1
= 2 + 1 - 1 - 2 = 0
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2
= 2 + 3 - 1 - 0 = 4
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0
= 2 + 1 - 1 - 2 = 0
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1
= 2 + 1 - 1 - 2 = 0
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2
= 2 + 3 - 1 - 0 = 4
- diff[2][0] = onesRow2 + onesCol0 - zerosRow2 - zerosCol0
= 1 + 1 - 2 - 2 = -2
- diff[2][1] = onesRow2 + onesCol1 - zerosRow2 - zerosCol1
= 1 + 1 - 2 - 2 = -2
- diff[2][2] = onesRow2 + onesCol2 - zerosRow2 - zerosCol2
= 1 + 3 - 2 - 0 = 2
Example 2:
Input: grid = [[1,1,1],[1,1,1]]
Output: [[5,5,5],[5,5,5]]
Explanation:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
grid[i][j]
is either0
or1
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
vector<vector<int>> onesMinusZeros(vector<vector<int>> &grid) {
int n = int(grid.size());
int m = int(grid[0].size());
auto res = vector<vector<int>>(n, vector<int>(m, 0));
auto row = vector<vector<int>>(n, vector<int>(2, 0));
auto col = vector<vector<int>>(m, vector<int>(2, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int x = grid[i][j];
++row[i][x];
++col[j][x];
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
res[i][j] = row[i][1] + col[j][1] - row[i][0] - col[j][0];
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 商店的最少代价
- Difficulty: Medium
- Tag:
给你一个顾客访问商店的日志,用一个下标从 0 开始且只包含字符 'N'
和 'Y'
的字符串 customers
表示:
- 如果第
i
个字符是'Y'
,它表示第i
小时有顾客到达。 - 如果第
i
个字符是'N'
,它表示第i
小时没有顾客到达。
如果商店在第 j
小时关门(0 <= j <= n
),代价按如下方式计算:
- 在开门期间,如果某一个小时没有顾客到达,代价增加
1
。 - 在关门期间,如果某一个小时有顾客到达,代价增加
1
。
请你返回在确保代价 最小 的前提下,商店的 最早 关门时间。
注意,商店在第 j
小时关门表示在第 j
小时以及之后商店处于关门状态。
示例 1:
输入:customers = "YYNY"
输出:2
解释:
- 第 0 小时关门,总共 1+1+0+1 = 3 代价。
- 第 1 小时关门,总共 0+1+0+1 = 2 代价。
- 第 2 小时关门,总共 0+0+0+1 = 1 代价。
- 第 3 小时关门,总共 0+0+1+1 = 2 代价。
- 第 4 小时关门,总共 0+0+1+0 = 1 代价。
在第 2 或第 4 小时关门代价都最小。由于第 2 小时更早,所以最优关门时间是 2 。
示例 2:
输入:customers = "NNNNN"
输出:0
解释:最优关门时间是 0 ,因为自始至终没有顾客到达。
示例 3:
输入:customers = "YYYY"
输出:4
解释:最优关门时间是 4 ,因为每一小时均有顾客到达。
提示:
1 <= customers.length <= 105
customers
只包含字符'Y'
和'N'
。
Metadata
- Link: Minimum Penalty for a Shop
- Difficulty: Medium
- Tag:
You are given the customer visit log of a shop represented by a 0-indexed string customers
consisting only of characters 'N'
and 'Y'
:
- if the
ith
character is'Y'
, it means that customers come at theith
hour - whereas
'N'
indicates that no customers come at theith
hour.
If the shop closes at the jth
hour (0 <= j <= n
), the penalty is calculated as follows:
- For every hour when the shop is open and no customers come, the penalty increases by
1
. - For every hour when the shop is closed and customers come, the penalty increases by
1
.
Return the earliest hour at which the shop must be closed to incur a minimum penalty.
Note that if a shop closes at the jth
hour, it means the shop is closed at the hour j
.
Example 1:
Input: customers = "YYNY"
Output: 2
Explanation:
- Closing the shop at the 0th hour incurs in 1+1+0+1 = 3 penalty.
- Closing the shop at the 1st hour incurs in 0+1+0+1 = 2 penalty.
- Closing the shop at the 2nd hour incurs in 0+0+0+1 = 1 penalty.
- Closing the shop at the 3rd hour incurs in 0+0+1+1 = 2 penalty.
- Closing the shop at the 4th hour incurs in 0+0+1+0 = 1 penalty.
Closing the shop at 2nd or 4th hour gives a minimum penalty. Since 2 is earlier, the optimal closing time is 2.
Example 2:
Input: customers = "NNNNN"
Output: 0
Explanation: It is best to close the shop at the 0th hour as no customers arrive.
Example 3:
Input: customers = "YYYY"
Output: 4
Explanation: It is best to close the shop at the 4th hour as customers arrive at each hour.
Constraints:
1 <= customers.length <= 105
customers
consists only of characters'Y'
and'N'
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int bestClosingTime(string customers) {
int n = int(customers.size());
auto f = vector<int>(n + 5, 0);
auto g = vector<int>(n + 5, 0);
for (int i = 1; i <= n; i++) {
f[i] = f[i - 1] + (customers[i - 1] == 'N');
}
for (int i = n; i >= 1; i--) {
g[i] = g[i + 1] + (customers[i - 1] == 'Y');
}
int res = 0;
int mx = g[1];
for (int i = 1; i <= n; i++) {
int cur = f[i] + g[i + 1];
if (cur < mx) {
mx = cur;
res = i;
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 统计回文子序列数目
- Difficulty: Hard
- Tag:
给你数字字符串 s
,请你返回 s
中长度为 5
的 回文子序列 数目。由于答案可能很大,请你将答案对 109 + 7
取余 后返回。
提示:
- 如果一个字符串从前往后和从后往前读相同,那么它是 回文字符串 。
- 子序列是一个字符串中删除若干个字符后,不改变字符顺序,剩余字符构成的字符串。
示例 1:
输入:s = "103301"
输出:2
解释:
总共有 6 长度为 5 的子序列:"10330" ,"10331" ,"10301" ,"10301" ,"13301" ,"03301" 。
它们中有两个(都是 "10301")是回文的。
示例 2:
输入:s = "0000000"
输出:21
解释:所有 21 个长度为 5 的子序列都是 "00000" ,都是回文的。
示例 3:
输入:s = "9999900000"
输出:2
解释:仅有的两个回文子序列是 "99999" 和 "00000" 。
提示:
1 <= s.length <= 104
s
只包含数字字符。
Metadata
- Link: Count Palindromic Subsequences
- Difficulty: Hard
- Tag:
Given a string of digits s
, return the number of palindromic subsequences of s
having length 5
. Since the answer may be very large, return it modulo 109 + 7
.
Note:
- A string is palindromic if it reads the same forward and backward.
- A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.
Example 1:
Input: s = "103301"
Output: 2
Explanation:
There are 6 possible subsequences of length 5: "10330","10331","10301","10301","13301","03301".
Two of them (both equal to "10301") are palindromic.
Example 2:
Input: s = "0000000"
Output: 21
Explanation: All 21 subsequences are "00000", which is palindromic.
Example 3:
Input: s = "9999900000"
Output: 2
Explanation: The only two palindromic subsequences are "99999" and "00000".
Constraints:
1 <= s.length <= 104
s
consists of digits.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
static inline constexpr int mod = 1e9 + 7;
int countPalindromes(string s) {
int n = int(s.size());
auto f = vector<vector<vector<int>>>(n + 5, vector<vector<int>>(10, vector<int>(10, 0)));
auto g = vector<vector<vector<int>>>(n + 5, vector<vector<int>>(10, vector<int>(10, 0)));
auto cnt = vector<int>(20, 0);
for (int i = 1; i <= n; i++) {
for (int j = 0; j < 10; j++) {
for (int k = 0; k < 10; k++) {
f[i][j][k] = f[i - 1][j][k];
}
}
int num = s[i - 1] - '0';
for (int j = 0; j < 10; j++) {
(f[i][j][num] += cnt[j]) %= mod;
}
++cnt[num];
}
cnt = vector<int>(20, 0);
for (int i = n; i >= 1; i--) {
for (int j = 0; j < 10; j++) {
for (int k = 0; k < 10; k++) {
g[i][j][k] = g[i + 1][j][k];
}
}
int num = s[i - 1] - '0';
for (int j = 0; j < 10; j++) {
(g[i][num][j] += cnt[j]) %= mod;
}
++cnt[num];
}
ll res = 0;
for (int i = 3; i <= n; i++) {
for (int j = 0; j < 10; j++) {
for (int k = 0; k < 10; k++) {
res += (1ll * f[i - 1][j][k] * g[i + 1][k][j]) % mod;
res %= mod;
}
}
}
return int(res);
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif