跳转至

biweekly-contest-85

A

Statement

Metadata

给你一个长度为 n 下标从 0 开始的字符串 blocks ,blocks[i] 要么是 'W' 要么是 'B' ,表示第 i 块的颜色。字符 'W' 和 'B' 分别表示白色和黑色。

给你一个整数 k ,表示想要 连续 黑色块的数目。

每一次操作中,你可以选择一个白色块将它 涂成 黑色块。

请你返回至少出现 一次 连续 k 个黑色块的 最少 操作次数。

 

示例 1:

输入:blocks = "WBBWWBBWBW", k = 7
输出:3
解释:
一种得到 7 个连续黑色块的方法是把第 0 ,3 和 4 个块涂成黑色。
得到 blocks = "BBBBBBBWBW" 。
可以证明无法用少于 3 次操作得到 7 个连续的黑块。
所以我们返回 3 。

示例 2:

输入:blocks = "WBWBBBW", k = 2
输出:0
解释:
不需要任何操作,因为已经有 2 个连续的黑块。
所以我们返回 0 。

 

提示:

  • n == blocks.length
  • 1 <= n <= 100
  • blocks[i] 要么是 'W' ,要么是 'B'
  • 1 <= k <= n

Metadata

You are given a 0-indexed string blocks of length n, where blocks[i] is either 'W' or 'B', representing the color of the ith block. The characters 'W' and 'B' denote the colors white and black, respectively.

You are also given an integer k, which is the desired number of consecutive black blocks.

In one operation, you can recolor a white block such that it becomes a black block.

Return the minimum number of operations needed such that there is at least one occurrence of k consecutive black blocks.

 

Example 1:

Input: blocks = "WBBWWBBWBW", k = 7
Output: 3
Explanation:
One way to achieve 7 consecutive black blocks is to recolor the 0th, 3rd, and 4th blocks
so that blocks = "BBBBBBBWBW". 
It can be shown that there is no way to achieve 7 consecutive black blocks in less than 3 operations.
Therefore, we return 3.

Example 2:

Input: blocks = "WBWBBBW", k = 2
Output: 0
Explanation:
No changes need to be made, since 2 consecutive black blocks already exist.
Therefore, we return 0.

 

Constraints:

  • n == blocks.length
  • 1 <= n <= 100
  • blocks[i] is either 'W' or 'B'.
  • 1 <= k <= n

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    int minimumRecolors(string blocks, int k) {
        int n = int(blocks.length());
        auto f = vector<int>(n + 1, 0);
        int res = k;

        for (int i = 0; i < n; i++) {
            f[i + 1] = f[i] + (blocks[i] == 'W');
            if (i + 1 >= k) {
                res = min(res, f[i + 1] - f[i + 1 - k]);
            }
        }

        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

B

Statement

Metadata

给你一个二进制字符串 s 。在一秒之中,所有 子字符串 "01" 同时 被替换成 "10" 。这个过程持续进行到没有 "01" 存在。

请你返回完成这个过程所需要的秒数。

 

示例 1:

输入:s = "0110101"
输出:4
解释:
一秒后,s 变成 "1011010" 。
再过 1 秒后,s 变成 "1101100" 。
第三秒过后,s 变成 "1110100" 。
第四秒后,s 变成 "1111000" 。
此时没有 "01" 存在,整个过程花费 4 秒。
所以我们返回 4 。

示例 2:

输入:s = "11100"
输出:0
解释:
s 中没有 "01" 存在,整个过程花费 0 秒。
所以我们返回 0 。

 

提示:

  • 1 <= s.length <= 1000
  • s[i] 要么是 '0' ,要么是 '1'

Metadata

You are given a binary string s. In one second, all occurrences of "01" are simultaneously replaced with "10". This process repeats until no occurrences of "01" exist.

Return the number of seconds needed to complete this process.

 

Example 1:

Input: s = "0110101"
Output: 4
Explanation: 
After one second, s becomes "1011010".
After another second, s becomes "1101100".
After the third second, s becomes "1110100".
After the fourth second, s becomes "1111000".
No occurrence of "01" exists any longer, and the process needed 4 seconds to complete,
so we return 4.

Example 2:

Input: s = "11100"
Output: 0
Explanation:
No occurrence of "01" exists in s, and the processes needed 0 seconds to complete,
so we return 0.

 

Constraints:

  • 1 <= s.length <= 1000
  • s[i] is either '0' or '1'.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    int secondsToRemoveOccurrences(string s) {
        int n = int(s.length());
        int res = 0;
        while (true) {
            bool c = false;
            for (int i = n - 1; i > 0; i--) {
                if (s[i] == '1' && s[i - 1] == '0') {
                    swap(s[i], s[i - 1]);
                    c = true;
                    i--;
                }
            }

            if (c == false) {
                break;
            } else {
                ++res;
            }
        }

        return res;

        // int one = 0;
        // for (const auto &c : s) {
        //     one += (c == '1');
        // }

        // int res = 0;
        // int current_one = 0;
        // for (int i = 0; i < n; i++) {
        //     if (s[i] == '1') {
        //         res = max(res, i - current_one);
        //         ++current_one;
        //     }
        // }

        // return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

C

Statement

Metadata

给你一个小写英文字母组成的字符串 s 和一个二维整数数组 shifts ,其中 shifts[i] = [starti, endi, directioni] 。对于每个 i ,将 s 中从下标 starti 到下标 endi (两者都包含)所有字符都进行移位运算,如果 directioni = 1 将字符向后移位,如果 directioni = 0 将字符向前移位。

将一个字符 向后 移位的意思是将这个字符用字母表中 下一个 字母替换(字母表视为环绕的,所以 'z' 变成 'a')。类似的,将一个字符 向前 移位的意思是将这个字符用字母表中 前一个 字母替换(字母表是环绕的,所以 'a' 变成 'z' )。

请你返回对 s 进行所有移位操作以后得到的最终字符串。

 

示例 1:

输入:s = "abc", shifts = [[0,1,0],[1,2,1],[0,2,1]]
输出:"ace"
解释:首先,将下标从 0 到 1 的字母向前移位,得到 s = "zac" 。
然后,将下标从 1 到 2 的字母向后移位,得到 s = "zbd" 。
最后,将下标从 0 到 2 的字符向后移位,得到 s = "ace" 。

示例 2:

输入:s = "dztz", shifts = [[0,0,0],[1,1,1]]
输出:"catz"
解释:首先,将下标从 0 到 0 的字母向前移位,得到 s = "cztz" 。
最后,将下标从 1 到 1 的字符向后移位,得到 s = "catz" 。

 

提示:

  • 1 <= s.length, shifts.length <= 5 * 104
  • shifts[i].length == 3
  • 0 <= starti <= endi < s.length
  • 0 <= directioni <= 1
  • s 只包含小写英文字母。

Metadata

You are given a string s of lowercase English letters and a 2D integer array shifts where shifts[i] = [starti, endi, directioni]. For every i, shift the characters in s from the index starti to the index endi (inclusive) forward if directioni = 1, or shift the characters backward if directioni = 0.

Shifting a character forward means replacing it with the next letter in the alphabet (wrapping around so that 'z' becomes 'a'). Similarly, shifting a character backward means replacing it with the previous letter in the alphabet (wrapping around so that 'a' becomes 'z').

Return the final string after all such shifts to s are applied.

 

Example 1:

Input: s = "abc", shifts = [[0,1,0],[1,2,1],[0,2,1]]
Output: "ace"
Explanation: Firstly, shift the characters from index 0 to index 1 backward. Now s = "zac".
Secondly, shift the characters from index 1 to index 2 forward. Now s = "zbd".
Finally, shift the characters from index 0 to index 2 forward. Now s = "ace".

Example 2:

Input: s = "dztz", shifts = [[0,0,0],[1,1,1]]
Output: "catz"
Explanation: Firstly, shift the characters from index 0 to index 0 backward. Now s = "cztz".
Finally, shift the characters from index 1 to index 1 forward. Now s = "catz".

 

Constraints:

  • 1 <= s.length, shifts.length <= 5 * 104
  • shifts[i].length == 3
  • 0 <= starti <= endi < s.length
  • 0 <= directioni <= 1
  • s consists of lowercase English letters.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    string shiftingLetters(string s, vector<vector<int>> &shifts) {
        int n = int(s.length());
        auto f = vector<int>(n + 5, 0);
        for (const auto &s : shifts) {
            int st = s[0];
            int ed = s[1];
            int d = s[2];
            if (d == 0) {
                d = -1;
            }

            f[st + 1] += d;
            f[ed + 2] -= d;
        }

        for (int i = 1; i <= n; i++) {
            f[i] += f[i - 1];
            f[i] = (f[i] % 26 + 26) % 26;
        }

        for (int i = 0; i < n; i++) {
            s[i] -= 'a';
            s[i] = char((s[i] + f[i + 1] % 26 + 26) % 26);
            s[i] += 'a';
        }

        return s;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

D

Statement

Metadata

给你两个下标从 0 开始的整数数组 nums 和 removeQueries ,两者长度都为 n 。对于第 i 个查询,nums 中位于下标 removeQueries[i] 处的元素被删除,将 nums 分割成更小的子段。

一个 子段 是 nums 中连续  整数形成的序列。子段和 是子段中所有元素的和。

请你返回一个长度为 n 的整数数组 answer ,其中 answer[i]是第 i 次删除操作以后的 最大 子段和。

注意:一个下标至多只会被删除一次。

 

示例 1:

输入:nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
输出:[14,7,2,2,0]
解释:用 0 表示被删除的元素,答案如下所示:
查询 1 :删除第 0 个元素,nums 变成 [0,2,5,6,1] ,最大子段和为子段 [2,5,6,1] 的和 14 。
查询 2 :删除第 3 个元素,nums 变成 [0,2,5,0,1] ,最大子段和为子段 [2,5] 的和 7 。
查询 3 :删除第 2 个元素,nums 变成 [0,2,0,0,1] ,最大子段和为子段 [2] 的和 2 。
查询 4 :删除第 4 个元素,nums 变成 [0,2,0,0,0] ,最大子段和为子段 [2] 的和 2 。
查询 5 :删除第 1 个元素,nums 变成 [0,0,0,0,0] ,最大子段和为 0 ,因为没有任何子段存在。
所以,我们返回 [14,7,2,2,0] 。

示例 2:

输入:nums = [3,2,11,1], removeQueries = [3,2,1,0]
输出:[16,5,3,0]
解释:用 0 表示被删除的元素,答案如下所示:
查询 1 :删除第 3 个元素,nums 变成 [3,2,11,0] ,最大子段和为子段 [3,2,11] 的和 16 。
查询 2 :删除第 2 个元素,nums 变成 [3,2,0,0] ,最大子段和为子段 [3,2] 的和 5 。
查询 3 :删除第 1 个元素,nums 变成 [3,0,0,0] ,最大子段和为子段 [3] 的和 3 。
查询 5 :删除第 0 个元素,nums 变成 [0,0,0,0] ,最大子段和为 0 ,因为没有任何子段存在。
所以,我们返回 [16,5,3,0] 。

 

提示:

  • n == nums.length == removeQueries.length
  • 1 <= n <= 105
  • 1 <= nums[i] <= 109
  • 0 <= removeQueries[i] < n
  • removeQueries 中所有数字 互不相同 。

Metadata

You are given two 0-indexed integer arrays nums and removeQueries, both of length n. For the ith query, the element in nums at the index removeQueries[i] is removed, splitting nums into different segments.

A segment is a contiguous sequence of positive integers in nums. A segment sum is the sum of every element in a segment.

Return an integer array answer, of length n, where answer[i] is the maximum segment sum after applying the ith removal.

Note: The same index will not be removed more than once.

 

Example 1:

Input: nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
Output: [14,7,2,2,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1].
Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5].
Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2]. 
Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2]. 
Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [14,7,2,2,0].

Example 2:

Input: nums = [3,2,11,1], removeQueries = [3,2,1,0]
Output: [16,5,3,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11].
Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2].
Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3].
Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [16,5,3,0].

 

Constraints:

  • n == nums.length == removeQueries.length
  • 1 <= n <= 105
  • 1 <= nums[i] <= 109
  • 0 <= removeQueries[i] < n
  • All the values of removeQueries are unique.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    vector<long long> maximumSegmentSum(vector<int> &nums, vector<int> &removeQueries) {
        int n = int(nums.size());

        auto f = vector<ll>(n + 5, 0);
        for (int i = 1; i <= n; i++) {
            f[i] = f[i - 1] + nums[i - 1];
        }

        auto se = set<pair<int, int>>();
        auto sum_se = multiset<ll>();

        se.insert({1, n});
        sum_se.insert(f[n]);

        auto res = vector<ll>();
        for (auto ix : removeQueries) {
            ++ix;

            auto it = se.lower_bound({ix, n + 1});
            --it;

            // if (it == se.end()) {
            //     cout << ix << " " << se.size() << endl;
            //     continue;
            // }

            auto st = it->first;
            auto ed = it->second;

            sum_se.erase(sum_se.lower_bound(f[ed] - f[st - 1]));

            {
                auto _ed = ix - 1;
                if (st <= _ed) {
                    se.insert({st, _ed});
                    sum_se.insert(f[_ed] - f[st - 1]);
                }
            }

            {
                auto _st = ix + 1;
                if (_st <= ed) {
                    se.insert({_st, ed});
                    sum_se.insert(f[ed] - f[_st - 1]);
                }
            }

            se.erase(it);
            if (sum_se.empty()) {
                res.push_back(0);
            } else {
                res.push_back(*sum_se.rbegin());
            }
        }

        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

最后更新: October 11, 2023
回到页面顶部